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ADAPTIVE METHODS FOR COMPRESSIBLE FLUID DYNAMICS

AFOSR-86-0148 FINAL REPORT

Marsha J. Berger

Two major research efforts have been supported by this grant. The first is the development of an

adaptive algorithm for hyperbolic conservation laws with simple physical geometry. This work is based on

a combination of two approaches - an adaptive mesh refinement technique that concentrates computational

effort where it is most needed, and a high order Godunov method developed for high Mach number

compressible flow. Th:.is app&,udch has aided in the resolution of the weak von Neumann paradox in shock

reflection. It was used to perform the first calculation of Kelvin Helmholtz instability along the slip line in

ramp reflection off an oblique wedge. When combined with other algorithms, for example, multifluid track-

ing, it was used to compute the interaction of a supernova remnant with an interstellar cloud, and to

categorize refraction patterns when a shock hits an oblique material interface. When combined with an

elliptic grid generator, it was used to study the diffraction of a shock over an obstacle. In each of these

cases, this approach to time-dependent fluid flow yielded factors of 10 to 100 inprovement in efficiency

over equivalent fine grid calculations with uniform resolution. This work was done in collaboration with

Prof. Phil Colella, at Berkeley, and Dr. John Bell at Lawrence Livermore Laboratory.

During the period of this grant, the two dimensional algorithm was developed and a paper was pub-

lished. The code is currently being prepared for release to other users. The algorithm was recently extended

to three dimensions. Due to the simple data structures and the use of nested grids in the same topology as

the coarse grid, this involved little additional algorithm development. The most major change involved the

development of a new fine grid generator. Memory usage for three dimensional calculations is at a prem-

ium. The old (two-dimensional) grid generator often resulted in overlapping subgrids or not very efficient

grids (encompassing too many cells that were unnecessarily refined). After extensive experimentation, we

are now using an algorithm based on edge detection, borrowed from the computer vision and pattern recog-

nition literature, to do a smart decomposition of the underresolved regions into efficient sub-rectangles.

One paper on this work will soon appear, and another is nearing completion.

The second major effort supported by this grant is the development of a Cartesian grid method to

solve problems in complex geometry. This will use all of the machinery developed above, i.e. the high

resolution Godunov methods and adaptive mesh refinement, along with special difference schemes that

need to be developed for the irregular cells along the edge of the domain where a grid intersects a solid

body. This work is in collaboration with Prof. Randall LcVcque.

Our first two approaches to the "small cell" problem at the irregular cells used the large time step

wave propagation method of LeVeqiie, and the flux redistribution algorithm of Chem and Colella. Prob-

lems with both of these algorithms (reduced stability in the first case, and poor accuracy in the second) led
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us to develop a third third approach to the "small cell" problem. We have developed a rotated difference

scheme for use in the normal and tangential directions at each point in the boundary, and are currently

extending it to second order accuracy. In addition to algorithm development, this projects leads naturally
to research into the accuracy of difference schemes on irregular grids. This work has relevance to other
types of approaches to this problem, for example, unstructured mesh algorithms for complex geometries.
Currently we have a two dimensional implementation of a Cartesian mesh algorithm for time-dependent

flow, including an initial implementation of the adaptive mesh refinement algorithm described above.

L;, .i ." , : "
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Cartesian Meshes and Adaptive Mesh Refinement for Hyperbolic
Partial Differential Equations

Marsha Berger Randall LeVeque
Courant Institute Math Department

251 Mercer St. University of Washington

NY NY 10012 Seattle, WA 98125

ABSTRACT

We describe a Cartesian mesh algorithm with adaptive mesh refinement for com-

puting fluid flows in complicated geometries. Stable boundary conditions are needed at

the irregular cells where the Cartesian mesh intersects the body. We develop a difference

scheme that is stable even when these irregular cells are orders of magnitude smaller than

the regular cells. We illustrate its performance with some computational examples solv-

ing the two dimensional Euler equations for inviscid flow.

Introduction

We describe a Cartesian mesh method to solve fluid flow problems in complicated geometries. In

this approach, we keep a uniform rectangular (Cartesian) grid and allow the solid boundary to intersect the

grid cells in an essentially arbitrary way. Cartesian meshes are an appealing way to simplify the grid gen-

eration problem for complex domains. Multiply connected domains and irregular geometries are only

slightly more complicated than a simple domain.

Cartesian meshes have by and large been overlooked in favor of body-fitted meshes or the more

recently popular unstructured meshes, but they deserve much more attention. Cartesian meshes have the

advantage of allowing the use of high resolution methods for shock capturing that are difficult to develop

on unstructured grids. They also allow for efficient implementation on vector computers without using

gather-scatter operations (except at boundary cells). They incur little computational or memory overhead

since there are no metric terms and they use far fewer pointer arrays than their unstructured counterpart

Among the few references on Cartesian mesh methods are [Clarke, Salas and Hassan; Choi and Gross-

man].

The major technical issue in Cartesian mesh methods is the small cell problem. Arbitrarily small

cells arise at the edge of the domain where the grid intersects a body. Stable, accurate and conservative



difference schemes are needed for these cells. Moreover, the time step for a time-accurate computation

should still be based on the volume of the regular cells away from the body, and not restricted by small

boundary cells. Previous efforts to use Cartesian meshes have merged these small cells together until a cell

with sufficient volume for stability is obtained. Clearly this loses resolution. In addition, if cell size is not

taken into account in implementing finite difference schemes on irregular grids, a second order scheme can

lose one or two orders of accuracy.

Our treatment of boundaries can be combined naturally with our adaptive refinement strategy using

locally uniform meshes. We retain the advantages (efficiency and accuracy) of uniform grids and are able

to resolve fine scale flow features induced by complex geometries. We are using the adaptive mesh

refinement algorithm (AMR) described in [Berger and Colella] to achieve accuracy comparable to the

body-fitted meshes, where grid points can be bunched in an a priori manner to improve the accuracy of the

solution.

A more complete description of our approach to developing stable boundary conditions for irregular

cells is described in [Berger and LeVeque]. Here, we only sketch the main ideas, and present computa-

tional examples for two dimensional time dependent flow in several different geometries.

One Dimensional Model Problem

We motivate the basic approach in one dimension, where we solve the equation u, + f (u)" = 0 on a

uniform grid except for one small cell in the middle (see Figure 1). Let h be the cell size of the uniform

grid, and th the small cell size, 0:< a: 1. We use an explicit finite volume scheme to update all cells,

U=u -U1 (f 112  -1 2)

at the regular cells, i*O, and

U + =V1, 2 -f-1/2)

at the small cell. We want to define the fluxes f±1/2 so that the overall scheme is stable as a -- 0.

Typical flux functions for the regular cells include Godunov's method, which for a scalar equations

with f'(u) 0 is just upwind differencing, with

f +112 = F (uiui+, =f (ui+l)

and the second order Lax Wendroff scheme
F(u,u+)-----(ui+u+ 1) At

2 2h

However, these definitions must be modified at the small cell, since if we define fhi2 = F(uo,u 1 ), the

resulting scheme loses accuracy and becomes unstable for small a. Our approach is to define a new state
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Figure 1 Special flux formulas are needed at the edges of the small cell to maintain stability and accuracy.

u,ft and let

fl2 =F (utpuI).

Here, utf, is an approximation to u at distance h/2 from the interface. For example, ut, might be obtained

by linear interpolation between u-1 and u0 ,

2ctu0 + (1-a) u-1
Ufft = 1 + a

Note that uj,/-uO as a-+l, and ug,/1 -4uI as a--O. In either of these limits the grid becomes regular again

and the difference scheme reverts to the uniform scheme.

Similarly, we define a flux f- 1/2 using the left state u-1 and a new right state u,;h, defined by interpo-

lating u to a point a distance h/2 to the right of this interface, e.g.

2OaUo + (1-t)uUigh* = 1 +aO

We then set

f-112 = F(U_- ,urigh).

It can be shown for the equation u, = u, that if uf, and un,,; are obtained by linear interpolation then

the resulting scheme is stable as a-O, using a time step At that satisfies the CFL condition for the regular

grid, . This results holds for both upwind differencing and Lax Wendroff. However, for Lax Wendr-
h

off, a more accurate procedure would be to use quadratic interpolation for u1 f, and utAh. In this case, a

combination of theoretical and numerical results show that if the additional point used in the interpolation

is the upwind point then the scheme is stable as t---O, but if the downwind point u-1 is used , then the CFL

limit is reduced to 1/2.
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Stable Ditieence Equations for Two Dimensional Irregular Cells

For two dimensional calculations, we again need a new difference scheme to compute fluxes at the

edges of the irregular cells adjacent to the boundary. The boundary of a solid body is represented by a

piecewise linear segment in each cell, so that the irregular cells can have either 3, 4 or 5 sides. Our

approach uses locally normal and tangential coordinate directions to define left and right states for a

Riemann problem at each cell edge. This fits naturally with the MUSCL scheme used in the interior of the

domain in our calculations. However, we generalize the pointwise approach in the one dimensional case,

and use aconservative averages of the solution over a box a distance h in the appropriate direction away

from a cell edge.. For example, in Figure 2 the state q, is obtained using an area-weighted average of the

values ui.j-l and ui.j that intersect the box from the regular grid. In an analogous way we obtain the state

q,. These values are then rotated into a frame of reference that is tangent to the boundary, and a one dimen-

sional Riemann problem in the tangential direction is solved. This gives the flux f4. This procedure is

repeated for the dashed boxes in Figure 2 that are normal to the boundary, giving a flux fn in the 1n direc-

Lion. (The part of the box that lies outside the domain is interpolated from qk, see Figure 3). The final value

of the flux at the vertical interface is a linear combination f~cosO +fnsin0, where 0 is the angle the boun-

dary makes with the grid. For a boundary with curvature, we determine these directions using the boun-

dary segment of the cell with the smaller area adjacent to the interface. This helps retain stability for the

j TI

i I

Figure 2 shows a schematic of the rotated difference scheme used to define the vertical flux.



smaller cells, by maintaining a certain cancellation property of our flux definitions, described more com-

pletely in [Berger and LeVeque]. Related work using rotated difference schemes has been done by [Jame-

son; Davis; Levy, Powell and van Leer].

At the solid wall boundary itself, the flux can be determined more simply, using only boxes normal

to the boundary as shown in Figure ?. First we obtain a value qk for the box interior to the domain, using

area weighted averages, and rotate the velocities into the boundary coordinate frame. A boundary Riemann

problem is solved between qk and 4 (with negated normal velocity), to satisfy the the boundary conditions

of no normal flow.

II
k-i

qk4Aq

k-2

Figure 3 indicates the scheme used to determine the boundary flux.

In this case, if the solid wall boundary happens to align with the Cartesian grid, the scheme reverts to

the usual first order Godunov method. To improve the scheme to second order, following the MUSCL

approach as described in [Colella], we need to introduce limited slopes in the solution reconstruction phase,

and tangential derivatives for predicting states at the cell edges. These steps are also necessary to improve

the stability limit for Godunov's method from 1/2 to 1. Work on these improvements is continuing. Refer-

ring to Figure 3, we add a tangential derivative f4 to the state qk for the normal Riemann problem, with

f4 =f (u(kk+l))-f (u(k-l,k)) / 1k, where Ik is the length of the kh boundary segment. The state

u(k,k+l) comes from solving a Riemann problem in the tangential direction at the interface between cells k

and k+l. As before, the stencil for this Riemann problem must be enlarged beyond the adjacent cells to

maintain stability. For example, the right state at this interface is not just the value qk.,, but a linear
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combination of the solution in several boxes, qk+l and qk+2, up to a distance h away from the interface.

The left state at this right interface can be taken to be the value qk since the length of that cell's boundary

segment is larger than h. This same procedure is used to include tangential derivatives in the normal box

Ricmann problems for interior cell edges. This procedure alone improves the CFL limit to 1. It remains to

incorporate monotonized slopes into the scheme in order to achieve second order accuracy.

While the overall scheme at the boundary involves twice as many Riemann problems as the ordinary

MUSCL scheme, it is fully vectorizable. The coefficients in the interpolations for the left and right states

are fixed for the duration of the integration, and are not dependent of the properties of the solution at each

step. In numerical experiments in two dimensions, this scheme remains stable for cell areas that are orders

of magnitude smaller than the regular cell areas (down to the round-off level). In essence, our method can

be viewed as a technique for defining fluxes on an irregular grid by a very local mapping to a regular grid.

This viewpoint may prove useful in defining higher order methods on unstructured grids.

Computational Example

We illustrate this by computing time dependent flow around a cylinder. The initial conditions are an

incident shock traveling at Mach 2.81. We use a simple MUSCL scheme to advance the flow field in the

interior of the domain. Figure 4 shows a contour plot of the flow field, as well as a plot of density as a func-

tion of arclength around the cylinder. The only cells drawn on the contour plot are the irregular cells from

the Cartesian grid that intersect the body. Note the smoothness of the arclength plot despite the irregularity

of the grid around the body. This example was computed using the local mesh refinement of [Berger and

Colella]; the location of the rectangular fine grids is indicated on the contour plot as well.
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An Algorithm for Point Clustering and Grid Generation

Marsha Berger

Isidore Rigoutsos

Courant Institute of Mathematical Sciences
251 Mercer St.

New York, NY 10012

ABSTRACT

We describe a new point clustering algorithm, and its application to automatic grid

generation, a technique used to solve partial differential equations. Algorithms from the

computer vision and pattern recognition literature are used to partition points into a set of

enclosing rectangles. We show examples from two dimensional calculations, but the

algorithm generalizes readily to three dimensions.

1. Introduction

This paper presents a new point clustering algorithm and its application to automatic grid generation.

The algorithm clusters the points into distinct rectangles such that neighboring points are in the same rec-

tangle (as much as possible), and all points are contained in some rectangle. The application is best illus-

trated by an example. We are solving a partial differential equation using finite difference techniques. The

difference equations are first solved on the uniform coarse grid in Figure 1. An "error estimation" pro-

cedure (Oliger] is then used to flag grid points that need to be in a finer grid, which is just a smaller rec-

tangular grid with finer mesh spacing. Figure 1 shows the flagged coarse grid points as well as the new fine

grids that together contain all the flagged points. This procedure is usually employed recursively, leading

to a nested sequence of increasingly fine, locally uniform subgrids which are superimposed on the underly-

ing base grid.

The grid generation problem then is to define a set of rectangles that enclose all the flagged points.

Certain factors make a huge difference in the performance of these grids in solving the pdes.

[ 1] There should be as little unnecessarily refined area as possible.

Since the cost of the numerical integration procedure is proportional to the area of the rectangle, the

smaller the beuer. Figure I gives an example of a set of flagged points for which a few patches lead to

much less refined area than refining the whole grid. This gain in efficiency is the purpose of adaptive
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Figure I shows a coarse grid with rectangular subgrids around the flagged points. The coarse grid

points with high error are marked wich an "x".

methods. Some unnecessarily refined area (or inclusion of non-flagged coarse grid points in a new rectan-

gle) is inevitable, since we are restricted to using rectangles. In addition, for numerical reasons the rectan-

gles are oriented with the base grid rectangle. This is true even if the flagged points lie on a diagonal of the

coarse grid, and could be perfectly enclosed by a rotawed rectangle. (However, an algorithm that uses

rotated rectangles is considered in [Berger]). Along these lines, if several rectangles are used to enclose the

flagged points, their overlap should be minimal.

Another criterion for generating these rectangles is:

[2] There should be as few rectangles as possible.

At the other extreme, we could put one tiny rectangle around each flagged point. Many of these tiny rec.

tangles would share a common boundary segment. However, there is boundary overhead associated with

each rectangular subprid that should also be minimized, along with the are. In addition, these procedures

will be used on vector processors, which favors larger vector lengths and therefore larger rectangles. (We

could worry further about this, for example by trying to maximize the length in a particular coordinate

direction, but we will not consider such machine specific details here).
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The third criterion is the most difficult to pinpoint.

[3] The rectangles should "fit" the data.

This is hard to make absolutely precise, but for example, if a person were to put the rectangles around the

points by hand, using whatever clustering or partition the brain uses, it would "look right". Although this is

not essential for accurate numerical integration on the rectangles, we prefer the adaptively generated

subgrids to be pleasing. Finally,

[4] The algorithm should be fast.

This algorithm is repeated every few timesteps, or hundreds of times during any particular numerical simu-

lation, and should therefore be fast relative to the time needed to take a time step on the resulting grids.

Our solution to this rectangle-fitting problem uses algorithms from the pattern recognition and com-

puter vision literature. A combination of signature arrays and zero crossings of second derivatives is used

to partiti-n the flagged points into rectangles. Our examples are all in two dimensions, but the algorithm

generalizes readily and has proven effective in three dimensions too. Before describing our algorithm, we
give a little background and discuss some other approaches we tried and discarded.

1.1. Previous Algorithms

Our previous algorithms for this problem can be summarized as being of two main types: bottom-up

or top-down. The top-down approach is based on a bisection method. It can be viewed as a form of

divisive hierarchical clustering (Duda and Hart]. Initially, the flagged points of the grid are surrounded by

a single rectangle, and its efficiency is computed. Here, we define the efficiency of a grid as the ratio of

flagged points to the total number of coarse grid points in the new rectangle. This is one of the key parame-

ters behind our algorithm, and it is easily computed. If the efficiency is above a preselected threshold, the

rectangle is accepted and the algorithm stops. Otherwise, we bisect the longest direction of the rectangle,

and generate two new subgrids. This process is repeated recursively on each of the two subgrids. When the

algorithm terminates, all of the subgrids are guaranteed to have acceptable efficiency ratings. However,

hierarchical clustering methods are known to create clusters even if no natuml clusters exist (Anderberg;

Harigan; Jain and Dubes]. In addition, since the bisection uses no information about the locations of the

flagged points, a non-optimal grid hierarchy is generally created. To alleviate this, we usually follow the

bisection step with a merging step, where neighboring subgrids we merged into larger subgrids if the result

continues to be acceptably efficient. This mregng step is what leads to the problem of overlapping grids.
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The bottom-up approach starts at the grid point level The flagged points are organized into a

minimal spanning tree, so that each point is connected to its neamest neighbor. Neighboring branches of the

tree are merged, either one point at a time, or a front at a time, as long as the resulting grid is efficient.

Although philosophically appealing, this algorithm actually performs much worse than the top-down bisec-

tion algorithm. A fundamental problem is the non-uniqueness of the minimal spanning tree. Also, the

algorithm suffered from the hill-climbing problem of getting stuck in local minima; it was very sensitive in

the beginning steps of the algorithm to the initial direction of growth of the clusters, and tended to stop

prematurely, although larger and acceptably efficient grids were just several branches away. In that case, it

had to be followed by a merging procedure as well.

T I

Fu i s c in s cases.... "

-I- - - - - ...

In practice, both approaches were preceded by a "nearest neighbor" clustering algorithm. The pur-

pose of this was to separate flagged points when possible into isolated islands (see Figure 2). This some-
times produces acceptable clusters by itself, but fails to help when the flagged points formed elongated,

curved shapes. T7hus, it was followed by either the bisection or minimal spanning ame algorithm. Summar-

umng. both of these algorithms produced less than optimally efficient grids that overlapped too much.

Better grids were easily created by hand.

2, Towards an Efficient Algorithm

In a mome general form, the grid generation algorithm should cluster a set of m flagged points into k
clutm, where k is either specified a priori or is determined by the algorithm itself. This special type of

clustering is called partitioning (Anderberg]. Our first approach considered the question of how to choose a
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set of k "seed poims" around which the k clusters would be built.

2.1 A First Approach: Local Maxima in Two-Dimensional Grids

Initially, each of the grid points is given a value: "I" for the flagged, and "0" for the non-flagged

ones. These grid values, viewed as a binary image, I(x,y), are then preprocessed by convolving it with

either an "averaging" or a "low-pass" filtering template, (see Figure 3) [Ballard and Brown; Horn; Levine].

This operation results in a non-convex function, J(xy), whose local maxima, determined by the Sobel

operators [Ballard and Brown; Levine] of Figure 4, compose the set of "seed points" around which we

build the clusters.

a) b) 1 1 2 1 11
a) b) -

11111 1 2 4 2 1

1 1 I 1 1 2 4 8 4 2

111111 2 4 2 1
1 11 11 1 121 1

Figure 3 shows the filtering templates: (a) Averaging (b) Low-Pass.

Three partitioning algorithms were tested using the seeds found above: the standard k-means algo-

ritun, its converging variant, and a k-means variant where no updating of the centroids takes place

[Anderberg; Hartigan]. These algorithms are outlined in the Appendix.

a) -1 0 1 b) 1 2 1

-2 0 2 0 0 0

-1 0 1 -1 -2 -1

Figure 4 shows the Sobel gradient operators: (a) alaz b) by.

Figures 5 and 6 show graphically the output of the three algorithms on two sample data sets. The

three algorithms exhibit the same overall behavior. The seeds are sensibly chosen, but in all the test cases

the resulting grids overlap excessively. We attribute this problem to the large number of seeds discovered

by this method. The next method tries to reduce the number of seeds, keeping only the best, and thus hope-

fully reducing the overlapping.
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2.2 A Second Approach: LbWal Maxima in Signature Arrays

Signatures have been known in computer vision and pattern recognition for many years (Ballard and

Brown; Horn; Levine]. Able to encapsulate gross characteristics of a shape, and computationally simple,

signatures proved very useful for establishing preliminary landmarks in images; these landmarks in turn led

to a subsequent reduction of the search effort. Given a continuous function, the horizontal and vertical sig-

natures, H (x) and V (y) are defined as

H (x) = f (,y) dy

and

V(Y) = f (x,y)d
z

respectively.

First, the horizontal and vertical signatures of the image are computed. The resulting one-

dimensional arrays are "smoothed" [Horn) using the template in Figure 7, and subsequently searched for

local maxima. Let M and N be the two sets of maxima. After discarding those tuples of the Cartesian pro-

duct MxNV that correspond to non-flagged regions, we are left with precisely the coordinates of the starting

seeds.

1 2 1

Figure 7 shows the one-dimensional smoothing template.

With this choice of seeds, we again employed the three partitioning techniques (k-means, converging

k-means, and the no updating variant). Figures 8 and 9 show the results. This algorithm resulted in fewer

subgrids and reduced overlapping, making this approach superior to uing the local maxima of l(xy) for

the seed points. Unfortunately, the generated subgrids were still not the most efficient ones; better choices

were clearly possible. Some observations bsed on extensive experimentation could still be made: 1) the

non-converging variants outperformed the converging k-means, 2) overlapping was minimal when no

updating of the centroids occurred, and 3) the distance metric (Manhattan Block vs. Euclidean) had no

appreciable effect on the results.

Apparently, the use of local maxima in signatures did not capture enough of the underlying structur

In the next section, we use signatures in a different way to partition the flagged points into clusters.

3. The Algorithm

Our best algorithm uses ideas related to edge detection. One of the many approaches to the edge

detecton problem is the one suggested by [Man and Hildreth]. Based on the psychophysical and neuro-

physiological experiments of (Campbell and Robson], the method consists of first convolving the original
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image against a Gaussian kernel and then computing the Laplacian of the result; the intensity discontinui-

ties are associated with those positions where the Laplacian is equal to 0 (zero crossings).

In what follows, the input grids are viewed as binary images in the sense of paragraph 2.1. The

edges will now be located at those positions of the grid where a transition from a agged point region to a
non-flagged one occurs. The most prominent such transition represents a "natural" line with respect to

which the original grid can be partitioned. For the example depicted in Figure 10, the line (e) represents

such a transition.

x x (e) X X

XXXX XXXX
XXXX XXXX
XXXXI XXXX

XXXXI

XXxXI
XXXX XX

XxXX XxXXXX
XXXXI XXXXX

XX XX xxxxxx
XX :XXXXXX

X:X X X X X

Figure 10 The rectangle is partitioned at line (e); after this, an isolated cluster can be detected for

further partitioning.

The problem is that of determining such a transition. The Marr-Hildreth method, although a poten-

tial candidate, cannot easily be employed towards this end for two reasons. First, its output is a collection

of Boolean values at the different grid locations: TRUE if a zero crossing exists at that location, FALSE
otherwise; these Boolean values need to be combined in order to generate an actual edge, a not so trivial

task. Second, since the Laplacian operator is isotropic, the "natural" line with respect to which the original

grid could be split will not, in general, be parallel to the sides of the grid.

Signatures again hold the answer, the idea is to look for zero crossings in the second derivative of a

signature. This idea borrows from both the signature approach and the Marr-Hildreth method, except that

we do not convolve with a Gaussian filter.

In general, there is more than one zero crossing in a given signature array. For our purposes how-

ever, we only select one zero crossing at a time; it corresponds to most prominent edge, and its location is

determined by sarching both the horizontal and vertical signature arrays for the zero crossing correspond-

ing to the largest local change of values. This is indicated in Figure 11, where the row (resp. column)
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XX (e) 2
XXXX. XXXX 8 -4
XXXX; XXXXXX 10 -1
XXXX; XXXXXXX 11 0
XXXXI XXXXXXXX 12 -1
XXXX: XXXXXXXX 12 0
XXXX' XXXXXXXX 12 0
XXXX' XXXXXXXX 12 -1
XXXX' XXXXXXX 11 IXX XXX, XXXXXXO 11 3

"-' < ' -Y X X X.. 14 -5
XXXP(XXXXXXXX 12 1

XXkXXXXXX 9

E 10 12 13 12 4 3 7 101212 12 111 0 8
A -1 -2 -7 7 5 -1-1-2 0 -1 0-1

Figure 11 The steepest zero crossing occurs at line (e), and makes the most efficient rectangles.

labelled Z contains the horizontal (vertical) signature, and the row (column) labelled A contains the Lapla-

cian of the signature in the appropriate direction.

The input grids are also expected to contain isolated regions of flagged points (islands), making it

necessary that both signature arrays be first searched for chains of O's, or "holes". This can be seen in Fig-

ure 10. The occurrence of such holes provides obvious choices for splitting the input grid into a number of

subgrids, and is exploited before any attempt at locating zero crossings is made. If any holes are found, we

do not attempt to compute any zero crossings. We proceed by applying the above steps to only those of the

generated sUbgrid that are still inefficient.

We now give a high level description of the actual algorithm, followed by sample runs in Figures 12

to 16 on a number of real and synthetic problem cases.
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BEGIN
iil;

while ( i <- numberofjrectangles ) do

if (rectangle efficiency < threshold) then

compute signatures ;

find the best place to split Ri ( either a hole or edge);

if ( found a place to split ) then

split rectangle in two;

append new rectangle to end of list of rectangles;

else

iffii+1;

endif

else

i = i + 1; (consider the next rectangle on the list)

end if

eW while

END

4. Comments on the Algorithm and its Performance

While most of the time the algorimm performs exceptionally well, sometimes it generates anomalous

and/or non-optiumal rectangles. As we will see, many of these can be eliminated by simple changes in the

algc ruhm. The anomalies fall into several general categories, which we illustrate by picture. The basic

algorithm description has two exit points: a rectangle is "accepted" either because its efficiency is already

above threshold, or because it cannot be further split using either of the two methods (i.e. holes and

inflection points). As a result, the efficiency of some of the generated subgrids may be below the preset

threshold. This is the case with all grids associated with regions that form an angle with the horizontal. The

inefficiency apprsches its maximum as angles approach 45 degrees.

Another problematic grid is the one appearing in Figure 17: as can be seen neither the horizontal nor

the vertical signatur s will contain any holes or zero crossings, and this will be true for all non-zero values

of ab. In all such cases the bounding rectangles will have an efficiency of precisely 50%. An ordinary

bisection step could be easily incorporated here to increase the effi,-iency to 100%. A similar arrangement

of flagged points which we have encountered in our experiments (see Figure 18) leads to another kind of

non-optimal choice. One way around this is to used weighted second derivatives, scaling the Laplacian by

the number of flagged points. This leads to a correct choice for the zero crossing in Figure 18.
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r ---------- Xx x KX(X-h
xxxxxxxxx
xxxxxxxxxXXXXX XX, b
xxxxxxxx>
xxxxxxxxx

Wxxxxxxxxxxxxxxxx
xxxxxxxxb XXXXXXXXX

)xxxxxxxx

Figure 17 T'here are no zero crossings in the signature arrays.

YXXXXx xx xx
xxxxxxxIXXXXXXX,

xxxxxxxI-Xx YX-XXXXXK

XXX XXILXx2xxxxx:xxx
:xxxxxxx:
:Xxx~x~x'
:XXXXxx'
XXXXXXXi

L_

Figure 18 This set of points leads to a non-optimal partition, unless the zero crossings ar scaled.

A modifcatio of ow algorithm that covers both anomalous cases is to compute the sur of the abso-

lute value of the gradient, and difference the results to get the second derivative. ie most robust solution

to this problem is till an open question.

A seemingly problematic case is shown in Figur 19. Hee it appe as if the algorithm made a

non-optima] decision by unnecessarily splitting rectangle R 1 (dotted line) into two smailer subrectangles.
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However, careful inspection shows that rectangles R I and R 2 could not have been generated without intro-

ducing an over ing region.

-X X,X- -ZT X .....

XXXXXXXXXXX
,xx xxxxxxxxxx
ixX XXXXXXXXXX:

~xxxxxxxxxxxxxx

<xxxxxxxxxxxx>

xxxxxxxxxxxX

, XXXXXXXXX
X XXXXXXXXXXNXX

'X XXXXXXXXXXXX

I, XXXXXXXXXXXXI

Nxxxx xxI<XXXXXX' XXXXXXXXXXX
IXXXXXXXXXX

RI-I

×x: -- --- i ' ."------
:xXXl

R I---- < X X .X; :' :

Figure 19 shows an unexpected set of rectangles.

Tight bounds for the running time of the described algorithm are very hard to establish, since the pre-

cise flow of the algorithm is input dependent. However, it should be clear that the nmning time is

O(k(P+N+M)), where k is the total number of grids upon termination of the algorithm, and P is the

number of flagged points. The P term comes from computing the signatures of the points (by traversing a

list of the flagged points). The N (resp. M) term comes from the linear search that determines the best

inflection point. The above bound is by no means optimal, and the algorithm performs very well in prac-

tice. Preliminary three dimensional results also show great performance.

S. Concusieu

We have described a new and efficient algorithm for point clustering and adaptive grid generation.

The algorithm's performace has been demonstrated through a series of graphs showing results obtained

with both synthetic and actual 2-dimensional inputs. Preliminary experiments with 3-dimensional problems

also show a considerably improved performance over the previous approaches. In general, the efficiency of

the enclosing rectangles for our applications has been very high, typically ranging between 85% and 100%,

with the exception of the problematic cases illustrated in figures 17-19. It is surprising how effective the
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algorithm perfoms on multidimensional data, even though it is based on Cartesian coordinate directions.

Finally, this algorithm may also prove useful in other applications with binary image data, for example in

generating bounding rectangles for computer graphics applications. A rectangle fitting algorithm has also

been used in conjunction with a pattern recognition system for understanding Japanese business cards [Kise

et al.].

6. Appendix

6.1 McQueen's k-means Partitioning Algorithm

[1] Form k single member clusters each one containing precisely one of the k starting seeds. The clus-

tes' centroids originally coincide with the starting seeds.

[2] Assign each of the remaining data points to the cluster with the nearest (with respect to an appropri-

ate distance metric) centroid recomputing the gaining cluster's centroid after each assignmenL

(3] Assume the cluster centroids are fixed this time, and reassign each of the data points to the cluster

with the nearest centroid (one pass through the data).

6.2 McQueen's Couverging k-means Partitioning Algorithm

[I" Form k single member clusters each one containing precisely one of the k starting seeds. The clus-

ters' centroids originally coincide with the starting seeds.

(2] Assign each of the remaining dam points to the cluster with the nearest (with respect to an appropri-

ate distance metric) centroid recomputing the gaining cluster's centroid after each assignment.

[3] For each data point compute its distance to all the cluster centroids; if the nearest centroid

corresponds to a cluster other than the point's actual parent cluster reassign the point; recompute the

cennuids of both the gaining and losing clusters.

(4] Repeat step 3) until a full sweep through the data does not induce further changes in the points'

membership.

63 Nom-Updating Variant of k-means Partitioning Algorithm

(1] Form k single member clusters each one containing precisely one of the k starting seeds. The clus-

tes' centroids remain fixed throughout the algorithm.

[2] Assign each of the remaining data points to the cluster with the nearest (with respect to an appropri-

ate disme metric) centroid but do not update the gaining cluster's cenroid (one pass though the
dat).
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Abstract-The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This
requires wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be
orders of magnitude smaller than the regular grid cells, stability is a primary concern. A new approach
to this problem is presented and illustrated.

I. INTRODUCTION we propose an alternative method that has some

In previous work'' we have described a Cartesian advantages over the wave propagation approach. In
id petos for thwe nviscid Euler equatesin particular, the wave propagation method is subject
gd method for the nvrequattns n to intermittent instabilities due to two-dimensional
arbitrary gemetries. There are many advantages to effects that are not clearly understood. The new
be gained from this approach. Grid generation is method has a cancellation property in two dimensions
simplified, since we avoid the use of (possibly multi- that appears to give better stability properties. More-
block) body-fitted grids, and we can use high resol- over, the computational geometry is simplied in the
ution, highly efficient solvers on regular grids over the new approach. The fluxes are defined in terms of
bulk of the domain. This has led to renewed interest weighted averages of nearby cell values. These weights
in Cartesian grids in recent years (see Refs 4 and 5). may be calculated as a preprocessing step on any
One of the difficulties with Cartesian grids is that fixed grid and need not be, repeatedly calculated. In
they give insufficient resolution in certain regions the previous approach the weights depended on the
such as leading edges. This can now be overcome by flow variables and a certain amount of computational
Cartesian adaptive mesh refinement." geometry was required near the boundary in every

The principal remaining difficulty in this approach time step.
is due to the essentially arbitrary way that a Cartesian We consider the inviscid Euler equations of gas
grid intersects the boundaries of the computational dynamics in two space dimensions
domain. In particular, a solid wall boundary cutting
through the grid creates irregular cells that may be (I)
orders of magnitude smaller than the regular cells
away from the boundary. For these irregular cells, where
special difference equations are needed that maintain
stability and accuracy, and satisfy the solid wall p
boundary conditions of no normal flow. pul

In this work, we present an improved method for U Pu2
the small boundary cells. We use an explicit, finite
volume formulation that computes fluxes at cell edges
on the regular part of the domain. We would like to - pu
define fluxes at the edges of the irregular cells in such 2puf + p
a way that the method is stable even with very small f(u) = P + |

boundary cells, using a time step based on the regular P U2

grid cells away from the boundary. The Courant- [_u,(pE + p)]
Friedrichs-Lewy (CFL) condition requires that the
numerical method allows information to propagate at [ PU2 1
least as quickly as the underlying differential equation. g(u) puI U2 (2)
In the present context this means that we must define gu +p
fluxes at the sides of our irregular cells based on more u2 (pE + p)J
than just the neighboring cell values.

In our previous work, we have used a wave Here (u1,u 2) represents the velocity, E is the total
propagation approach in defining these fluxes. Here energy per unit mass, and p is the pressure which is

305
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related to the other variables by the equation of state. is satisfied, where Xm,, is the maximum wave speed.
We assume a y-law gas, so that We will assume that our time step k is chosen so that

the condition (7) is satisfied relative to the uniform h.
p = (y - 1)(pE - ip(u + u )). (3) We will use the flux Eq. (6) for/ = 2, 3 . . . , i.e. at all

interfaces where the cell on both sides is regular. Our
At a solid wall boundary we require that the task is to define fluxes F, for j = 0. 1 so that we

component of velocity normal to the wall be zero. maintain stability (and accuracy) with this time step
In one space dimension the system reduces to even if h' << h.

First suppose h' = h. Then we can use the
u, +.(u), = 0, (4) Godunov flux [Eq. (6)] also at j = 1. At the wall we

use the well-known observation that the solution to
where u = (p, pr, pE) and f(u) = (pt, p 2 + p, t'(pE the boundary value problem can be obtained b%
+p)), with r = u, the velocity. The boundary con- ignoring the wall and extending the computational
ditions become v = 0 at a solid wall. domain to the whole line - x <x < _ if we take

data u0(x) for x < 0 equal to

2. A ONE-DIMENSIONAL EXAMPLE
p(x. 0) = p( -x. 0)

In order to illustrate this approach we begin with a
one-dimensional model problem, the one-dimensional c(x, O) = -t'(-v, 0) for x <0
Euler equations for x > 0 with a solid wall at x = 0.
We take a grid with cell interfaces at the points p(x, 0)= p(-x. 0).

x0 = 0 We will denote this "reflection" of the data (in " hich
the velocity is negated) by the operator ,, so that

x, = h' shorthand we can write

x,=h'+jh for j=2,3 .... u(x,0)=1(u(-x,0)) for x <0.

Here h is a uniform grid spacing and h' < h. The grid With this extended data, the solution continues to
is uniform except for one small cell near the boundary satisfy u(x, t) = -4(u(- x, t)) also for t > 0 and in
(see Fig. 1). We use a conservative method in the particular the boundary condition u(O, t o) 01,
form automatically satisfied. This suggests that we ohtain

k a flux at the wall by solving a Riemann problem Aith
U = U;-[F .~ h, F7] , 1=0,1.... (5) left and right states

Here h, is the width of thejth cell, so in our case we uL=.A(U ) UR=Uo
have h0=h' and h,=h forj>0.

For simplicity we restrict our attention to in each time step to obtain
Godunov's method in the regular portion of the grid,
although the ideas we propose can be extended to F, =.I(u*((Uo). u,)).
higher order methods as well. In Godunov's method
we take (For brevity we will leave off the superscript P1 in

F7 =f(u*(U,_ I, U,)), (6) general.) Note that the density and energy component,
of this flux will be zero since the velocity component

where u*(uL, ul) represents the solution to the u* is zero at the wall. There will only be a momentum

Riemann problem with left and right states uL and flux at the wall due to the pressure there, as expected

uR, evaluated along x!t = 0. Although a rigorous physically.

stability proof is not available for systems of If h' < h we could attempt to use this formula to

equations, in practice this method is always stable define F but we would find that it is unstable unleN,

provided the CFL condition the CFL condition

h I (7)h

is satisfied. This will place an unreasonable restriction
u2  on k if h' < h.

,' X2  X This instability is caused by the fact that the
Xo=O boundary flux F, is based on the data U,, alone If

Fig. I. One-dimensional grid with one irregular cell adjacent the CFL condition (8) is satisfied, then it is onl> thi.
to the wall. data that affects the flux at the wall over the time step
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However, when Eq. (8) is violated the value U, should For example, at x0 = 0 (the wall) we set
also affect the flux at the wall, and ignoring this effect
leads to instability.

In a -large time step" approach we increase the h

stencil of the method, meaning we allow more data
points to come into the computation of each flux, and If we view the grid values as defining a piecewise
hence retain stability. One way to achieve this is by constant function with values U, in the jth cell, then
a wave propagation approach. The solution of the Eq. (I l) is the average value of this function over the
Riemann problem at each cell interface consists of interval 0 < x < h. Note that if h' = h (the grid is
three waves propagating away from the interface. If completely regular) then Eq. (II) reduces to u." = U,
Eq. (8) is satisfied then these waves remain in the cells as expected for Godunov's method. Recall that in
bordering the interface during the entire time step Godunov's method we take u' = .(U0)= 1(u')
and hence affect the solution only in these cells. If Eq. to impose the boundary condition r(O, t) = 0. This
(8) is violated then the waves may affect cells further suggests that more generally we take
away. Implementing Godunov's method in terms of
this wave propagation approach. allowing waves to u,1 =L (uR), (2)
affect more than just the adjacent cell. gives a large
time step generalization that remains stable for much where uo' is defined by Eq. (11). We then use the
larger time steps.' In the present context this allows Godunov flux
us to reduce h' without reducing the time step k.
Waves from the boundary Riemann problem cross F =f(u*(u0o Uo)) (13)
the interface at x, and affect U, as well as U. Waves
from the interface at x, may reach the boundary. as the flux at the wall. Using Eq. (12) guarantees that
These waves reflect off the boundary and the reflected there will be no flux of mass or energy through the
wave affects the value L, and perhaps also U,1 if the wall and hence that the method is conservative.
reflected wave reaches the cell interface at x, during To define the left and right states of x, we again
the time step. construct intervals of length h to either side of this

A more detailed description of this procedure may point and average the piecewise constant function
be found in Ref. 3. A natural extension to two space defined by U over these intervals. To the right of x,
dimensions gives one method to deal with small cells lies a regular cell of length h, and so
near the boundary, as described in Refs 1-3. In one
dimension this works very well but in two dimensions u R-=-L. (14)
occasional stability problems have still been observed
due to multidimensional effects. To the left of x, an interval of length h extends

beyond the wall (assuming h' < h). Beyond the wall
2. I. The new approach we assume that U takes the value u0' given by Eq. (12).

Our new approach to the small cell problem caa A weighted average of this value and U0 gives u,
also be illustrated with the one-dimensional problem
described above. We again use the method of Eq. (5) UL= WU + (h - h)uL) (15)
with Godunov fluxes [Eq. (6)] for j = 2. 3 .... For h

j = 0 and j = I we define fluxes in a similar manner
but with a different choice of states uL and uR in the The flux]' is then defined by
Riemann solver. Recall that in a naive attempt to use
Godunov's method regardless of the size h' of the F, =f(u*(u(. ut)). (16)

small cell we would take left and right states
Again, if h' = h this reduces to the standard Godunov

u1 =.4(U0 ) uR =,, (9) flux.
This method remains stable even when h" , h. To

u L UL, u= (10) see why this should be so, consider the formula (5) for
j = 0 where h, = h'. It is the division by h' that may

To maintain stability when h' is small, we need to cause stability problems unless the fluxes F, and F,
allow data from additional grid cells to affect the themselves agree to O(h) as h'-.0. The Godunov
left and right states at each of these interfaces. Recall fluxes based on Eqs (9) and (10) do not have this
that the method is assumed to be stable with our property. However. our proposed fluxes (13)and (16)
choice of k and h on the regular portion of the grid. do have this property, since inspection of the formulas
This suggests that we would define u' by taking the (I1), (12), (14) and (15) shows that uf = Uo + 0(h')
average value of U over an interval of length h to and u0g = 0 + 0(h') as h'--0. Since the flux function
the left of the interface x, and define u,' by taking the I'(u*(uL, uR)) is a Lipschitz continuous function of uL
average value of U over an interval of length h to the and uR, it follows that F, - F = 0(h') as h'-.0 and
right of x,. there is at least a chance that the method remains
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stable for arbitrary h' < h. Numerical experiments .
show that this is indeed the case (although it is poss-
ible to contrive examples, such as a strong rarefaction ..... ......

wave originating at this irregularity, where the results
are not very accurate). ...

3. BOUNDARY CONDITIONS IN TWO DIMENSIONS
Fig. 3. The inbox and outbox constructed from the bound-

Turning now to the two-dimensional problem, we ary segment of cell (i,j). and the inbox for two neighboring
will give a brief description of how the idea described cells.
above extends to handle the small cell problem.

Consider the portion of the boundary shown in sions the solid wall boundary condition requires that
Fig. 2a and a typical boundary cell (i.j). The formula the normal velocity at the wall be equal to zero. If we
for updating the value U,, is the two-dimensional have some value u'" representing the value oi ,. just
analog of Eq. (5) inside the wall, then we can obtain the flux H,, by

k solving a one-dimensional Riemann problem in the

I, -direction normal to the wall, with left and right states
(17) L=n

uL = m4un R = u

The fluxes F. G. and H represent flux per unit time 1 u u1 u,,.

through the corresponding side of the grid cell (see The reflection operator R is now defined by negating
Fig. 2b) and A, is the area of the cell. If any of the the normal velocity component while leaving the
sides are missing, the corresponding flux is zero. tangential velocity component along with the density

On regular grid cells, H, = 0 and the fluxes F and and pressure unchanged. The resulting Godunov flux
G might be defined by an extension of the Godunov is used for H,,.
method, setting We obtain un by a procedure analogous to that

of the one-dimensional example. We construct a box
F, = hf(u*(U,, U,,)) extending a distance h away from the wall as shown

in Fig. 3. The box extending into the computational
G,J= hg(u*(U,.,i, U,,)). (18) domain is called inbox(i,]). The mirror image box

outside the domain is called outbox(i.j). We obtain
Here u* represents the solution to the appropriate the value u" by viewing the given data U as defining
Riemann problem in the x or y direction. Note that a piecewise constant function, constant in each grid
the fluxes include the factor h, the length of each side, cell, and setting u" to be the average value of this
to give a flux per unit time across the side. function over the region inbox(i,j). In Fig. 3 inbox(i.j)

It is the denominator A,, in Eq. (17) that causes would contain an area-weighted average of two grid
trouble when the cell is very small. We again assume values while the value for inbox(i - I.J) is based on
the method is stable on the regular portion of the four grid values. We think of the outbox as containing
grid, where A,, = h-. To maintain stability we need to the value u., =4(um)

insure that our formulas for the fluxes cause the total To find the weights needed to compute u ', we must
flux [the sum in brackets in Eq. (17)] to cancel to compute the intersection of the inbox with each
O(A,,) as A,,-.O. This is only possible if the fluxes are nearby cell. This is easily accomplished with standard
computed via formulas that involve more than just computational geometry routines. Note that for a
the two cells bordering the cell side. We take an given geometry and grid these weights need only be
approach analogous to what we described above in computed onze at the beginning of the computation.
one dimension. They need not be recomputed in each time step.

3. 1. Boundary fluxes 3.2. Fluxes at other sides

We begin by considering the boundary segment. We now consider the fluxes F and G along other
where we must compute the flux H,,. In two dimen- sides of this cell. These are all computed by similar

(a) (b) procedures, so to be specific we will consider the
computation of F,,. the flux on the left side of this cell.

(ij'") ITo compute F, we solve two Riemann problems.

F, I F one in some direction ', with data u. uf and the other
(nj)/ (,.jFj, in the orthogonal direction r with data u,. u.

The choice of these directions and the data will be
G'J , discussed in a moment. First we explain how these

Fig. 2. (a) The Cartesian grid near the boundary Ib) Blow- Riemann problem solutions are computed and used
up of cell (i.]) showing the location of fluxes. to define F,.
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Fig. 4. A vertical cell interface and the - and q-directions. Fig. 5. (a) Tangential boxes construted from the cell
interface. (b) Normal boxes fiv,. 'he cell interface and

outbox(i - l.j).

Figure 4 shows a typical vertical cell interface
and two orthogonal directions , and r1. Let 0 be the overlaps. In our current implementation we assume
angle that , is rotated from the x-direction (0 < 0 in the wall is convex, so that tht;.e boxes lie entirely
this example). Suppose we solve a one-dimensional within the computational domain. Each box overlaps
Riemann problem in the ,-direction with left and at must, two grid cells and the weights are easily
right states ut, u to obtain the flux per unit length calculated. Since the directions , and q and the
per unit time in the ,-direction. (To do this we rotate requlting boxes depend only on the geometry. not on
the velocity components of uL. u,! into -rl velocity the flow variables, these weights can again be calcu-
components, solve the one-dimensional Riemann lated once and for all as a preprocessing step.
problem, and then rotate the resulting flux f back
to x-v velocity components.) Call his resulting 3.4. Normal boxes
flux fk. Figure 5b shows the normal boxes in the rt-direc-

Similarly, solving a one-dimensional Riemann tion. The box in the outward direction does not hit
problem in the n-direction with left and right states the boundary and ovci-laps at most two regula. "S.
un, u" givesf, the flux per unit length per unit time so u is calculated as an area-weighted averag, of
in the n-direction. The total flux across the vertical these cell values. The other box may extend beyond
segment of length h' is then the boundary. If so, the portion lying outside the

computational domain lies in one or more outboxes,
F =-h '(J cos 0 -. I sin 0). (19) the artificial cells created in the process of computing

the boundary flux H, described above. Figure 5b
This is the value we use for the flux F, shows a simple example where the normal box

This same approach has been used by others intersects only one cell (i - I.J) and outbox(i - I.]).
(see Refs 8-10) to define multidimensional upwind More generally the normal box might intersect two
methods. In these methods the directions , and TI ceiis and their outboxes, as happens for example
are chosen based on the local flow in an attempt to when we compute the flux F,,,, whiclh involves cells
use physically meaningful directions in place of the (ij) and (ij - 1). Moreover the two outboxes will in
artificial coordinate directions. For example. the general overlap due to the convexity of the region.
direction of the velocity or the pressure gradient We again use area-weighted averaging over the four
might be used to define ,. In our application we are cells in question, weighting the values U, U,, u',
only considering cells adjacent to the boundary and ul ' by the areas of intersection and then dividing by
the relevant directions are the directions tangential the sum of all these areas.
and normal to the wall. We choose r. to be the
direction tangential to the wall in one of the two cells 3..,. Cancellation
bordering this interface. Since our primary concern Although we will rot present the details here, it can
is to maintain stability in very small cells, we choose be shown that this way of defining fluxes leads to the
the smaller of the two adjacent cells to define this desired cancellation of fluxes in very small cells. 1.
direction. This will lead to cancellation of fluxes in values of ut computed at each of the three sides of a
tiny cells in the same manner as previously seen in the very small triangular cell are nearly the same because
one-dimensional example. The il-direction is normal of 'ir construction. Th-r differ by only 0(A,,) as
to the f,-dirction. A,,- c' The sam, is true of each of the other values

u n., U, u" and so by Lipschitz continuity of the fluxes
3.3. Tangential ,hoxes F. G and H we obtain the required cancellation.

We must still specify the data for these tangential Numerical results show sthility even when .4, is
and normal Riemann problems. We first consider the many orders of maL,.iitude less than h2.
tangential problem. We use an approach similar to
the specification of data in an inbox described above. 3.6. Higher order methods
From the interface we construct boxes that extend a The method (17) with fluxes (IS) is only first order
distance h in the Z-direction. Figure 5a shows an accurate and i,: highly dissipative. In our previous
example. The data ut. 0 are obtained by an area- work we used the wave propagation boundary con-
weighted average of the values in each cell the be,,, ditions together with a high resolution method away
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from the boundary and obta.ned reasonable results The initial conditions consist of a Mach 2.31 shock
(see Ref. I). The new boundary conditions can also at x = 0.06 with left and right states
be applied in conjunction with a high resolution
method and give similar results. Moreover, with our pL = 5.1432, uf = 2.04511, u& = 0,
new formulation it appears to be easier to improve
the accuracy of the boundary conditions, allowing pL = 9.04545
us to obtain higher order accuracy overall. The main
idea is to introduce slopes in each cell and use and
piecewise linear approximati,,is in place of p..:cewise
constants to define the fluxes. Near the boundary we pR = 1.4. uI = 0. u 0, p 1.0.

can easily estimate slopes in the tangential direction
along the wall by differencing values in the inboxes We take h = 0.02 (66 x 40 grid) and a time step
that we have defined above. k = 0.002. This corresponds to a Courant number of

These improvements are still being inve-tigated roughly 0.37 relative to the regular cells with area 1 2.

and will be reported in detail elsewhere. Here we will r.or the crude form of Godunov's method used here.
only compare results obtained with the method as we the stability restriction requires a Courant number of
have described it and results obtained using the same less than 0.5. The smallest cells near the boundary
interior method with the wave propagation boundary have an area of roughly 10 - h 2.
conditions described in earlier p,'.pers. Figure 6 shows numerical results at time t = 0.4. as

the shock is rounding the corner. Results obtained
with the wave propagation boundary conditions are

4. NLMERICAL RESUILTS shown in Fig. 6a, while Fig. 6b shows the results

obtained with our new approach. These results are
We show one representative test case, a supersonic very similar. Slight discrepancies can be seen near the

shock going around an expansion corner. We also wall just around the shock. For this problem, both
show the steady state solution obtained at la~ge times. sets of boundary cond.ions worked well. We ha.e
The exact rarefaction wave solution is a simple wave also performed tests on other problems where the
and can be computed following Sec. 6.17 of wave propagation method shows instabilities and
Whitham,'' for example. have observed no such difficulties with the new

The geometry we use is tue rectangle [0, 1.32] x method.
[0. 0.8] with a solid wall at Figure 7 shows the steady state results obtained

after many iterations of the time dependent code (no
. 0.3 x < 0.1 attempt has been made so far to accelerate converg-

= 0.3(1 - (N - 0.1)) 0.1 x < 0.7 ence for steady state solutions). We only show the
(0.192 - 0.36(x - 0.7) 0.7 x (< 1.32. results with our new boundary conditions. The wave

(a) (b)

Fig. 6. Shock propagation results at t =0.4. (a) Using the wave propagation boundary conditions.
(b) Using the new boundary conditions.

9 (b)

7-

30 0.4 0.8 1.2

Fig. 7. Steady state results. (a) Pressure contours. (b) Pressure along the wall. The solid line is the exa,'t
olution. + indicates the numerical solution.
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The aim of this work is the development of an automatic, adaptive mesh refinement stratcg.
for oling h .perbolic conservation laws in two dimensions. There are two main difficulties in
doing this The first problem is due to the presence of discontinuities in the solution and the
effect on them of discontinuities in the mesh. The second problem is how to organize the algo-
rithm to minimize memory and CPU overhead. This is an important consideration and will
continue to be important as more sophisticated algorithms that use data structures other than
arra. are developed for use on vector and parallel computers. , 1989 Academic Press. Inc

1. INTRODUCTION

In this paper, we present computations that use adaptive mesh refinement
to solve multidimensional. time dependent shock hydrodynamics problems.
Complicated structures such as multiple Mach reflections arise in these problems.
Adaptive techniques are essential for our computations in order to adequately
resolve features in the solution within today's computer limitations.

Our starting point will be the algorithms in [6] for adaptive mesh refinement for
hyperbolic equations on rectangular grids. In this approach. the refined regions
consist of a small number of rectangular grid patches with finer mesh spacing than
the underlying global coarse grid. These rectangular subgrids contain points where
the error in the coarser grid solution is too high. and other points as well. We use
rectangular subgrids so that we can use integration methods for rectangular grids
whose con'ergence properties are well understood. These methods can be made
quite efficient on vector and parallel computers. In addition, rectangular grids have
a simple user interface. We can use the same integrator on fine and coarse grids. By
separating the integrator from the adaptive strategy. an off-the-shelf integrator can
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be used without modification. This eliminates much of the problem specific work in
doing adaptive calculations.

The present "vork differs from that in [6] in several respects. The main one is
that we are computing unsteady flows with shocks, so that maintaining global con-
servation form is a primary consideration. The second difference is that the nested
refinements we use have boundaries coinciding with the grid lines of the underlxing
coarse mesh. This greatly simplifies the maintenance of conserxation o~er the
former approach. where the refined subgrids were allowed to be rotated %kth
respect to the coarse grid. Third. great care was taken to obtain .in efficient
implementation on a supercomputer. The main difficulty with adaptie method, i,
the need for data structures not usually found in numerical software Wke felt -he
program complexity was high enough to justify the effort of devising as general .nd
automatic an approach as possible.

Earlier work along the lines of the present work was done by [J in one dimcn-
sion. and [14] for scalar problems in two dimensions. [19] have also comrutcd
transonic flow in two dimensions with grid embedding. However. in :he l~tte: t',,

approaches. the grids were not restricted to rectangles. The data str,'cturc-.
therefore the efficiency of such an approach, are quite different. Our mthod )I
adaptixity through grid refinement is in contrast to methods that adapt the -r'd
moving grid lines into one region, lea' ing a coarser region somewhere else
15. 13. 20. 8]. Such methods try to get the most accurate solution for a fied ,
whereas our approach tries to attain a fixed accuracy for a minimum co , ,'-
approaches have their advantages and disadvantages. The so-called mo%:n,-.
point methods often have trouble maintaining a smooth grid. Regularit tern,
penalty functions used to regularize the grid add overhead and reduce the imrn.
of these methods. Local grid refinement, on the other hand. has the drm',,
needing special equations at grid interfaces. In a method where a fixed nurv,-.:
=rid points are used during a computation. the user must initially guess at k h." k
be an adequate number of points to resolve features in the solution that n-.\,.
later With local grid refinement, grid points are added or removed as nece,-.

In the numerical experiments shown below, we have combined this ida:-
mesh refinement strategy with the high resolution difference scheme of r1,
develop an almost automatic software tool for solving gas dynamics pr,, ic,-.
tko space dimensions. A reasonable question is. why is an adaptive method n .
given that the difference scheme used. a second-order Goduno%-tvpc m.
already has quite high resolution" Conversely. if adaptive methods arc
such complicated and expensive difference schemes really necessary? The .ir- .-

that both components are necessary to obtain well-resolved results ur '. .,oF
hvdrod.namics. It has been demonstrated [22] that the more comr[,c:
Goduno-tvpe schemes give more resolution per computational dollar than ,in<'.L:
schemes such as Lax-Wendroff. Gi%en that a high quality scheme is necc....:.
adaptic mesh refinement can then concentrate the computational effort in rc_-,, .
where it is most useful. Since GodunoN-tvpe methods are mcre expen, ic.
simple ,chemes. the computational savings of selective refinement can he ,uh',,:.-
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tial. Some of the computations presented here could not have been done reasonably
without the use of qn adaptive solver.

In the sections that follow, we describe the adaptive mesh refinement (AMR)
algorithm for integrating a general hyperbolic system of conservation laws

u,+ f(uK+g(u), =0 on Dc:R 2

Bu=b on jD.

Our numerical examples involve the Euler equations for gas dynamics, where

PEput+( oE) puE+ up/) pt'E+t'p)

and

Although our work to date is in two space dimensions, all the algorithms extend
to three dimensions, and in fact it seems possible to implement a general code
where the number of dimensions is input.

In the next sections we describe in detail the adaptive mesh refinement algorithm
and its implementation. We give enough detail for users interested in modifying the
algorithm. using our code. or writing their own. First, we discuss the structures that
define our grid hierarchy. Next, we describe the integration scheme for such a
(static) grid hierarchy. Third. the grid generation and error estimation procedure-
used to generate the grid hierarchy itself are presented. Our error estimation proce-
dure is theoretically justifiable only for smooth solutions. We discuss variations of
it that may prove useful for problems with shocks. In the last section we present
numerical experiments along with a detailed timing analysis of the runs. This
program is being used to study Mach reflection in two dimensions with resolution
not previously possible. New results, a triple Mach stem configuration at low
have been observed.

2. GRID DESCRIPTION

AMR is based on using a sequence of nested, logically rectangular meshes on
which the pde is discretized. In this work. we require the domain D to be a finite
union of rectangles whose sides lie in the coordinate directions. We assume here
that all the meshes are physically rectangular as well. although this is not essential.
The method discussed here can be implemented on a general quadrilateral mesh.
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(See. for example. [5]). We define a sequence of levels/= 1 .... 1m A grid G(, has:
mesh spacing h,. with level I coarsest. and define

G= , G:..

With an abuse of terminology describing a grid and the domain it covers. w*e haxe
G, = _, G, , = D. the problem domain. If there are sexeral grids at leel I. the grid
lines must "align" with each other: that is. each rid is a subset of a rectangular
discretization of the whole space.

We ma% often have oxerlapping grids at the same lexel. so that G - 6 .
i/ *k. Hoxweker. w-e require that the discrete solution be indepcndent of hoxk i ,
decomposed into rectangles.

Grids at different levels in the grid hierarchy must be "proper nested." Thi,
means

( i a fine grid starts and ends at the corner of a cell in the next coarser :rid.

ii There must be at least one le'e! I - I cell in some level I- I grid separat-
ing a arid cell at level I from a cell at level /- 2. in the north. south. east. and wcst
directions, unless the cell abuts the physical boundary of the domain.

Note that this proper nesting is not as stringent as requiring a fine grid to hc

contained in only one coarser level rid. For example. in Fig. 2.1, there is one grid
at lexel 3. G, . Every grid point in G, ; is contained in one of the two grids at
level 2. G,. or G.

Grids will be refined in time as well as space, by the same mesh refinement 'atw,
rw where r = -v. .-.. Thus,

J1, J1 Jtj

v A.V A.V

and so the same explicit difference scheme is stable on all grids. This means more

I t Grid G, spans tvo coarser grids but is proper). )evel nested
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time steps are taken on the finer grids than on the coarser grids. This is a
reasonable requirement from the point of view of accuracy, since for many dif-
ference schemes. the leading terms in the spatial and temporal truncation error are
of the same order. In addition, the smaller time step of the fine grid is not imposed
globally. In this implementation we only allow an even refinement ratio. This
simplifies the error estimation procedure described later, by avoiding the need of
distinguish between an odd and even number of grid points in a grid.

At discrete times the grid hierarchy may be modified. The finest grids need to be
changed ("moved," deleted if necessary) most often. When grids at level I are
changed, all finer level grids are changed as well. but the coarser grids may remain
fixed. New grids at level I may replace the old ones, but they are still subject to the
same "proper nesting" requirement.

A point Cx. Vy ED may be contained in several grids. The solution ulx, ,') will be
taken from the finest grid containing the point. If there are several equally fine grids
containing the point, any fine grid value will suffice, since the solution on the
intersection of overlapping fine grids will be identical.

3. INTEGRATION ALGORITHM

AMR assumes there is a basic, underlying, conservative, explicit finite difference
scheme of the form

" u" z4 t f ,F t . 2 -6
JV Jv

The values u,, are cell-centered quantities. Each cell is defined by its four corner
grid points. If there are no refined regions, then Eq. (1), augmented by the dis-
cretized physical boundary conditions. defines the time evolution on a single grid.

With multiple grids, each grid is separately defined and has its own solution
vector, so that a grid can be advanced independently of other grids, except for the
determination of its boundary values (see Section 4). The integration steps on dif-
ferent grids are interleaved, so that before advancing a grid to time t + it, all the
finer level grids have been integrated to time t. Scheme I I ) is still initially applied
on every grid at every level, but the results will need to be modified in case

il the cell is overlayed by a finer level grid: or
(ii) the cell abuts a fine grid interface but is not itself covered by any fine grid.

In case (i , the coarse grid value at level I- I is defined to be the conservative
average of the fine grid values at level I that comprise the coarse cell. After every
coarse integration step. the coarse grid value is simply replaced by this conservative
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average, and the value originally calculated using ( I ) is discarded. For a refinement
ratio of r, we define

coarse fine

where the indices refer to the example in Fig. 3.1. We could define a coarse cell u

at multiples of the fine time step in the same way. but this is not necessary. This
is equivalent iwithin roundoff error) to redefining the coarse fluxes around the
overlayed coarse grid point to be the sum over the fine time steps of all fine grid
fluxes calculated on any boundary segment for that cell. However. this implementa-
tion would use extra storage to save the fine grid fluxes. By updating the solution
values themselves, no extra flux storage is needed.

In case lii 1. the difference scheme (IU itself that is applied to the coarse cell must
be modified. According to (I). the fine grid abutting the coarse cell has no effect.
However. for the difference scheme to be conservative on this grid hierarchN. the
fluxes into the fine grid across a coarse. fine cell boundary must equal the flux out
of the coarse cell. (This conservative procedure has been discussed by [I ].A fuller
discussion of conservation at grid interfaces is in [4].) We use this to redefine the
coarse grid flux in case (ii). For example. in Fig. 3.2, the difference scheme at point
i, j should be

u, It + Jtcoarse)

= U '. ( t J X q t r ,op o

J tcoarse (t) G M 2

where _x and Jv are coarse spatial step sizes. The double sum is due to the refine-
ment in time: for a refinement ratio r. there are r times as many steps taken on the
fine grid as the coarse grid. If the cell to the north of (i, j) were also refined, the
flux G, - would be replaced by the sum of fine fluxes as well.

Fici. 3 1. The coarse cell value is replaced by the average of all the fine grid points in hat cel

4.
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it

FIG. The difference scheme is modified at a coarse cell abutting a fine grid.

r This modification is implemented as a correction pass applied after a grid hase been integrated using scheme (I, and after the finer level grids have also been
integrated, so that the fine grid fluxes in (2) are known. The provisional coarse flux

used in ( I ) is subtracted from the solution u..a.e (t + Jtcoarse), and the fine fluxes are
added using Eq. 12). To implement this modification, we save an array 6F of fluxes
at coarse grid edges corresponding to the outer boundary of each fine grid. After
the coarse grid fluxes have been calculated by (I ), we initialize 6F with

• coarse6F, .,. F?.i_. 3

At the end of each fine grid time step, we add to ,F,. i z/the sum of the fine grid
fluxes along the (i + 1 2. j 1 h edge.

WF : W: 6 , ;.+ fine
I -k -I 2.m -p-

Finally, after r fine grid time steps have been completed. we use 6F, . / to correct
the coarse grid solution so that the effective flux is that of (2). For example, for cell
ii 4 -, j, we make the correction

..uarse 'ore + to rs ,
;: u O-, Xcoar,e

If the cell i + 2./ were refined, we would also make the correction

ar/c , corse J t. ar ,e

and similarly for the .ertical fluxes.
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The boundary fluxes 6F are stored in a vector associated with every fine grid. In
the initialization step (3). there may be several coarse grids that set F. Since all
fluxes calculated at a given edge and level are identical (up to roundoff error) and
are independent of the particular grid on which they are calculated, we simply use
the last %alue assigned. At the end of a time step. we may have several fine grids
available to update a given coarse cell edge. since overlapping grids are permitted.
For this reason. we use a matrix to indicate the edges of a coarse cell that have
already been updated and only perform the update once for each edge. As before.
it does not matter which fine grid actually performs the update for any given edge.
so the result is independent of the order in which the fine grid list is traversed. Th;-
modification is a negligible amount of work. taking approximately 0.1.o of a
typical run time. On machines with a scatter gather operation. this should proceed
even faster.

We emphasize that this work is done as a 'fix up" step after each grid is updated
using scheme ( 1 ). In this way. the integrator can be separated from the additional
work which is needed because of the grid hierarchy. A new difference scheme can
be substituted by a user unfamiliar with and not interested in the inner %korkin,
of the AMR program.

4. BOUNDARY CONDITIONS

A discussion of boundary conditions completes the description of the integralor
procedure on a multiple grid hierarchy. Let the interior integration scheme htc i
stencil which is centered in space, with d points to each side. To compute the nc .,
time step. AMR provides solution values at the old time step on a border oi ccii-
of width d intersected with the physical domain. The user must supply the cod:c
compute any additional information needed to implement the boundary condi::,-
For example, if boundary conditions are imposed by extrapolation. the user v,,.,K

provide the extrapolated values for points outside the domain.
For a grid at level 1, the bordering cell values are provided using %alue, :. 'I"

adjacent level 1 grids where they are available: otherwise. the AMR algorithm
putes boundary values using bilinear interpolation from coarser level ,oi
values. If necessary. we also interpolate linearly in time.

It may happen that a point (x. y) is inside the domain D. but one or morc,:
rounding coarse grid points needed for the bilinear interpolation are outl:. \,

before. we assume there is a user-supplied routine that can provide exterior
grid points given some interior points.

Our implementation partitions the required border cells at level I into rectan,,L.uL1
boundar. patches. For each rectangular piece we:

i i find solution values from level /-I grids on a slightly larger rectanUr,:-
piece enclosing the border cells:

i linearly interpolate for the border ',alues:

a.t
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(iii1 if there are fine grids at level I that could supply some values (say an
adjacent fine grid), overwrite the linearly interpolated values from step (ii).

In step i), most of these coarser level values are found by intersecting the rec-
tangular patch with level I- I grids and by filling the overlapping pieces. However,
it may be necessary to go to even coarser grids to supply these level I- 1 values.
This is done by applying i) to (iii) rccursively to the smallest rectangular patch
containing the unfilled cells.

For efficiency. it is important that the boundary values are supplied on a rec-
tangular patch at one time and not computed a point at a time. Even though the
amount of work is proportional to the boundary of each grid, our initial implemen-
tation took 40',o of the run time and had to be rewritten. By working on grid
patches. the bulk of the memory transfers are done in blocks, and the number of
subroutine calls is minimized. This is particularly important on the Cray, where
there is a substantial performance penalty for single word accesses and subroutine
calls.

5. CREATING THE GRID HIERARCHY

At specified time intervals, an error estimation procedure is invoked, and a new
grid structure is determined. If there are several nested levels of refined grids, the
error estimation and grid generation procedures are recursively applied on each
level, from finest to coarsest, to (re-)create the fine grids at the next level. The error
estimation procedure (see Section 6) produces a list of coarse grid points with large
error estimates, indicating that a fine grid patch is needed in that region. Every
flagged coarse grid point should be included in a finer grid. Our grid generation
algorithms try to produce grids that have as little overlap as possible, so that the
area that is unnecessarily refined is as small as possible. The algorithm also strixco
for a small number of patches that are as large as possible, to reduce the computa-
tional overhead. It is difficult to find a foolproof algorithm that satisfies these often
conflicting goals. However. we have developed heuristics that have been successfull.
tested in many different applications. A much fuller discussion of grid generation i,
in [3]. Here. we will describe the particular set of algorithms that produced the
numerical results in Section 7.

Suppose there is a base level. la, where grids will stay fixed, but that the finer
levels from + I to Inet may be "moved." Starting with the finest level grids. wc
estimate the error. using a procedure described next. If there are points where the
error estimate is too high, these points arc flagged, and a level/, + I grid will be
needed. Next. we estimate the error on the existing f,- I grids. If there are
flagged points, a different level Inne:, grid will be created, making sure that if there
are any level +r.. 4- I grids, they are properly contained in the level Inn,,, grids. This
continues until the error is estimated on the base level grids. Thus, it is only
possible to add one new level at a time. although many levels may be rcmoved
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during a single regridding operation. (At the initial time however, where the initial
data is known for all x, Y and not just at coarse grid points, it is possible to add
many levels at a time. This is essential for some problems. where the error can
depend entirely on the initial conditions.

In more detail, our regridding algorithm performs the following steps:

I) Adds the hufter :one. A buffer zone of unflagged points is added around
every arid. This ensures that discontinuities or other regions of high error do not
propagate out from a fine grid into coarser regions before the next regridding time.
This is possible because of the finite propagation speed of hyperbolic systems. The
larger the buffer zone. the more expensive it is to integrate the solution on the fine
grids, but the less often the error needs to be estimated on the coarse grids and the
fine grids moxed. The buffer zone is added by flagging all coarse grid points that
are sufficiently close to flagged points with high error estimates. A buffer zone of
two cells in each direction is typical. By flagging neighboring points, instead of
enlarging grids at a later step. the area of overlap between grids is reduced.

12) Flags every cell at lev-el I corresponding to an interior cell in a cvel /- 2
'rtd. This will maintain proper nesting. by ensuring that there will be a new Ie~el

I- 1 grid containing eery point in the level I-- 2 grid. even if the lexel I grid error
estimation did not report a high error. This procedure ensures that the fine grid
error estimates are used instead of the coarse grid estimates at the same point. To
ensure proper nesting. points within one cell of a non-physical jinterior) boundar%
of G are deleted from the list of flagged points.

131 Creates rectangular fine zrids. The grid generator takes all the flagged
points as input, and outputs a list of corners of rectangles that are the level I- I
grids. Nearby points are clustered together. and a fine grid patch spanning each
cluster is formed. These clustering algorithms use heuristic procedures described
separately below.

(41 Ensures proper nestini'. The new fine grids are checked to ensure that
they are properly contained in the base lexel grids. If they are not. the new grid is
repeatedly subdivided until each piece does fit. Since the flagged points originall.
were inside the base grid. at least one cell from the boundary. the new grid contain-
ing the flagged points must exentually lie inside as well. Since the base level grids
did not move. step f21 cannot be used to ensure the proper nesting of this ie~el.
This problem only arises when the base grids are a non-conxex union of rectangles.

Step (31 is the difficult one. Since problems in gas dynamics develop
I-dimensional discontinuities. we ha e streamlined the more general grid generation
procedures of [3] for this particular application. The procedure we use here
includes a hisection step and a merging step. Initially. a grid patch is formed around
the entire list of flagged cells on a given level. The efficiency of the patch is
measured by taking the ratio of flagged cells to the total number of cells in the ne,
grid. If this efficiency rating is less than an input minimum efficiency Ie.g., 6 0 0 o 1.
the long direction of the rectangular grid is bisected. and the flagged points are
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sorted into two clusters depending on which half they are in. The process is
repeated on the two clusters. The bisection steps ends when each cluster has an
acceptable efficiency rating.

The bisection step uses no geometric information, so although each grid may be
"acceptable- by itself, the resulting grid hierarchy may not be optimal. For this
reason, the bisection is followed by a merge step. In addition to an absolute
efficiency criterion, grids are merged if the new grid is relatively more efficient than
the two smaller grids. The cost function we use to measure this is proportional to
the cost of an integration step on each grid. On an m by n grid, (rn -+- ) by (n -+- I
fluxes are calculated, with perhaps 1000 vector operations per flux. In addition
there is a cost associated with the perimeter of each grid: finding interface condi-
tions. conserxative updating of coarser grids, and special slope calculations that are
done only for boundary fluxes. Some of this work uses scalar arithmetic, at least on
machines such as the Cray I that does not vectorize indirect addressing and
gather scatter operations. The total cost associated with a grid is proportional to
mn + m -- n. Grids are merged if the single resulting grid has a smaller cost. The
merging step ends when no pair of grids can be successfully merged.

Although this procedure is somewhat ad hoc, it has been successfully used on
several different types of problems. The grid generation routines, not including the
solution initialization on each grid or the error estimation to produce the flagged
points, account for approximately 1.70 of the CPU time for a typical run.

6. ERRoR ESTIMATION

In [6], estimates of the local truncation error were used to select those grid
points on a given level with unacceptably large errors. If the solution u(x. t) is
smooth enough, the local truncation error u(.v. t + k - Quix. t I on a mesh with
spatial step h and time step k satisfies

wl.v. t - k I - Qum x t ) =kk ' mx t 10k -t- c,(- x. r Il) kO(0u* + Vu

:=.v. tI- - WWI - n + h" -

where the leading term is denoted by :. Here we assume our difference method Q
has order of accuracy q in both time and space. If u is smooth enough. then if we
take two time steps with the method Q. to leading order the error is 2r

u \. t - 2k) - Q'u t) = 2- -t kOWk - " - hq - 1 ).

Let Q, denote the same difference method as Q but based on a mesh widths of 2h
and 2k. Then

ui .i - 2k) - Q:, u~r. t) = 2 " --, OWh )
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By taking two steps with the regular integration scheme, and one "'giant" step usi
every other grid point, the difference

Q~ug x. t - Q~hu.,
=q - ' -- 0O I -r

oi'es an estimate of the local truncation error at time r. Wke empha,ze th~i :, n
neces-arv to kno, the exact form of the truncation error te.g.. . n',
order

This procedure is easily implemented in AMR for the conser,..!t!%:c :n;tc d.
ference methods presented here. The ,,alues on a grid at a given level .i% pr,, c-
onto a %,irtual grid coarsened by a factor of two in each direction. The ... .:on
both grids is ad',.anced in time: the original grid for t~vo time V's. :hc .. r-ene
grid for one step using a time step tkkice as large. The difference Lejxeen " ,
tions obtained on the two grids at each point is proportional to the lo,.,, .
error at that point. At coarse cells Ahere the difference bet %een the 'A.
alues exceed some tolerance. all four cells contained in the real grid a, :'.-j

requiring refinement. Notice that this estimation procedure is tndeper '" .-
finite difference method actually used. as well as the pde. One diad%.ant :
procedure is that it always predicts a large error in the neighborhood , - .'co
discontinuities. It is easy to construct examples for %0--i the proced,
abo.e ,kill gixe values or, the coarsened rid whKXi differ pointie'
independent of the mesh spacing in the neighborhood of a shock I, "
leads to refinement of the mesh at all discontinuities v, th stren ".

some minimum.
Theoretically. one could define a distributional error b a'eragin,_ .

bet,,een the two solutions over some reion centered at the . .i c

S(!i relame c, the mesh spacing. We haxe , sed %arious technic .- .
ing out such a procedure all of 'xhich arc ,qui%.Aent to ignoring the r,, .

estimate in the neighborhood of those discontinuities k hich. bx sorn,

are considered adequately resolxed. For problems in ,hock h.drd."..
shock discontinuities. and not slip surfaces or contact discontinuttlc- .

satisfy any such criteria. This is b.cause conserxatixe finite diffcr:'... :.

apphed to shocks mimic the conxergence of characteristics in the arai'
so that the shock spreads only o~er a fixed number of zones, ndepc.. .

mesh spacing and time. Thus, for example. it is unneceNsar% to refine :.
neighborhood of a shock separating tvo constant states. In contr.i,-
nccessar% to refine at linearly degenerate discontinuities since the " .
o0er y hich they spread is an increasing function of time.

There is a second set of difficulties ith refinement in the presern,,
shock, There is exidence that shock-captur;ng methods are zeroth-ordcr
ic . that the fluxes computed in the neighborhood of the shock differ .
the eA.ict fluxes at a given time step [21. 16]. These 01 1 errors o,. :-
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wves associated with the characteristic families crossing the shock, sending 0(1
pointwise errors into the postshock region. For shocks computed on a single
uniform grid. this does not occur, because the same 0( 11 errors are committed on
successive cell edges with a phase lag, so that errors in the time integral of iuc-
cessive fluxes cancel upon differencing. However, when a shock intersects an inter-
face between two grids with different mesh spacings the 0 11 errors in the timeintegrals of the fluxes on each of the two grids will be different. generating 1 )

errors in the solution propagating into the postshock state. In practice. %Ae ha~e

observed that the amplitude of the spu:ious waves generated in :his fashion i,

proportional to the amplitude of the jump in the characteristic quantities carried H
characteristics crossing the shock. In practice. then. there is usuall a threshotid
shock strength below% which the errors generated by a shock crossing a grid discon-
tinuity are acceptable and above which the errors generated are too large. For the
latter shocks, they must be refined e~ervhere. if they are to be refined an.w iere

We illustrate this with an example where we force the algorithm not to refine the
grid abi %e a certain height. This forces the strong incident shock. Aith a ,hock
Mach number of 10. to pass through a fine grid boundary into the coarse grid. The
oscillations caused by this are apparent in the contour plots of Fig. 6.1 and the plot
of Fig. 6.2 for a fixed value of v.

Combining the two considerations given above, a fairly general refinement
strategy is to usc the local truncation error estimate described above, but ignore :t
in the neighborhood of gas-dxnamic shocks whose strength lies below ,ome
predetermined threshold. This has the effect of refining, possibly unnecessarily. ll
shocks whose strength is above the threshold. We have found that this strategy
works acceptablx well if the coarsened base grid is sufficiently fine, so that the
waves are well separated. A much simpler strategy. which is applicable in a large
class of problems. is simply to use the user's knowledge of the problem instead o!
the truncation error estimates. For example. in the shock reflection problems gix ct-
below%, the solution is made up entirely of smooth waves and weak shocks a certair.
distance behind the incident shock. Consequently. we simply ignore the locai
truncation error estimate in that region.

Fir e tI Contour plot showinig the etfects of a strong shock passing through a grid boundar.,
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Fi , Denst., profile for a horizontal line slightl, belo. the arid interface interec'm "hc 'm k

V1 .IERIC,\L RESULTS

We choose as our test problem reflection of a planar shock in an ideal ga, bh an
oblique surface. In this problem. a straight shock is incident on a perfectly reflecting
surface. At later times, a reflected wa'e pattern is generated. depending onl on -.
.t,. and '. where x is the angle between the direction of propagation and the rellec-
ting surface. -i, is the incident shock Mach number. and is the ratio of peciCic
heats. The solution to this problem is formall) self-similar, depending on . ..
only in the combination (.A t, 't). Thus. the time dependence of the ,olution
giken by a linear scaling of a fixed %%a~e pattern with time. We are particulr k(
interested in values of the problem parameters for %khich kery complicated ,m li
scale structures are observed.

The underlying integration method in our AMR calculations is a second-ordet
Goduno method described in [10]. In our calculations, \&e make use o)i the ."at:
that the regions where the small scale behaior can appear are localized in .he

cCinityr of the reflection point. Our procedure for estimating the error is to measure
the local truncation error of the density. except that we do not tag points be onj
a certain distance behind the incident shock. This effectielv restricts our refinement
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TABLE I

Breakdovn of Computational Times Obtained Using FLOWTRACE

Grid integration 78.29
Interpolation 12.95
Output 2.87
Grid updates 2.8
Grid generation f.'

\1emor management 0.59

to be in a oindo%% mouing with the reflection point, and shuts off the grid refine-
ment ground the i eak) reflected shock.

The results presented here were calculated on the Cray XMP 22 at the LLNL
NMFECC. using the CFT 1.14 compiler. To obtain detailed diagnostic information
about where most of the time is spent in the calculation, we used the FLOW-
TRACE option of the CFT compiler in the first calculation below. The total time
spent was 5674 seconds of CPU time. Table I shows a breakdown of the calculation
time into six categories: the integration routine, the interpolation routines (for con-
structing boundary conditions and initializing new fine grids) the updating routines
(fine grids updating coarse grids and for maintaining conservation across grid
interfaces ). the grid generation routines, output routines, and memory management
routines.

The main result is that the integration step takes about 80% of the computa-
tional time. This figure includes integration steps needed for the error estimation.
However, measurements show that the latter is only 3% of the integration cost.
with actual useful integration steps accounting for 97% of the integration time.
Note that the error estimation cost is %ery small despite the fact the error is
estimated at every other coarse time step. There are two reasons for this. First. over
90" , of the cells being integrated belong to the finest level grids (level 3 in both
calculations). and the error is not estimated there. Second, since refinement is per-
formed in time as well as space. the overwhelming majority of the work is done on
the finest grid. Table II shows the number of cell updates done on each grid level.
as well as the total number of cell updates done for error estimation.

We can thus obtain a rough estimate of the efficiency of AMR relative to com-
puting on a uniform grid. About 800 of the run time is spent integrating grids. The

TABLE II

Number of Cell Updates at Each Lexel

Le',el I 298, 10'
Le~el 2 4 59 10,
Level 3 1 13 10'
Error estimation 3 06 x 10'
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finest level grids occupy only about 10% of the domain. Thus an equivalent
uniform grid computation would require a factor of 8 more CPU time. Of course
in this particular problem, one could omit computations ahead of the incident
shock, since the solution there is constant. saving approximately half the uniform
grid time. In general, this could not be done.

It is more difficult to compare memory usage with that of a uniform grid calcula-
tion. The integration algorithm used here requires five 2-dimensional grid arrays for
scratch space. in addition to the four required to store the conser,,ed quantities.
so that the memory requirements for a uniform grid calculation would be
9 .320 1600 t 4.5 x 10' words. In contrast. the maximum storage used in the
calculation performed here was 8.94 x 10' words. Much of the memory use in -AMR
is due to saving two time levels of the solution on each grid. It is possible to a.oid
the memory overhead of having full grid scratch arrays by breaking the calculation
into pieces. i In fact. we effectively do this in the AMR calculations by restricting the
size of any grid to be less than some pre-determined maximum. subdio.iding rids
that are too large.) However, this would introduce overheads and programming
complexities in the uniform grid calculation similar to those in AMR. In an ' case..
even if those overheads could be neglected and only four full grid arraN '.ere ;.
required. the memory required would be 2.0 x 106 words, a factor of 2.2 larger than
that required by AMR.

In Fig. 7.1. we show results for the case M, = 10, x = 30: = 1.4. Th: d.,m-in is
a rectangle of length 2.0 by 0.4. with initial coarse grid spacing J.x = Ji = T2 -he
calculation ran for 149 coarse grid time steps. The error was estimated e'er. ,,ther
step, with a buffer zone of one cell and a grid efficiency of 65 0 0. The error tolcrinoe
was 0.02. The mesh was refined by a factor of 4 in each direction at each arid Ic'.i
The finest grids in this calculation represent a factor of 4 increase in resolutIrn :n
each spatial direction o',er the finest grid calculation in [22]. Figure .la ,h,,,k, :h
location of the level 2 and 3 grids at time t = 1.20. In displaying the s~out:,,r. .ke
show two sets of plots. One is a contour plot of the full flow field. The other :, in,
enlargement of the region around the reflection point. This is the part ,I :he
domain covered by the level two and three grids. In both cases. the contour ,,ts
are made using the finest available grid in the subregion. Due to the n~rc,'c.
resolution, we can now observe a non-self-similar Kelvin-Helmholtz roilup ,L,
the principal slip line. This is to be expected. since this slip line is n-ta.hic 1-e
Kelkin-Helmholtz rolls are formed near where the weak shock emanating lr,,'r, 'e
second triple point impinges on the slip line. They then propagate along :ho : '
line and are eentually swept up into a large rollup at the tip of the et. jI,,l'

bottom wall.
Finally. in Fig. 7.2 we present results for .I,= 8. x = 35 .= 1.07 It h a-, c ,

noticed [I I] that the wave patterns associated with double Mach reflection hco,:e7
increasingly complex as -, is reduced. The jet along the reflecting wall formed H !h
slip line from the principal Mach triple point is more and more ,ir,,ngi.
accelerated. pushing the Mach stem out ahead of it. This leads to strongt% r,:a-
tional supersonic flow and the formation of multiple Mach triple points The pre-
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a

E

b

C

Fic,. Shock refleinon off in oblique wedge with =1.4, M, 10. 2 30: 1a) Shows the grid
hierarchy: grid I is a le~el Igrid, grids 6 and 34 are level 2 grids, and the rest are level 3 grids, at time
t =0.. I' bi Density. ull Ilow field. ici Density, level 2 and 3 grids only. (d) Pressure, level 2 and 3 grids
only. iet Entropy. le~ed 2 ind I grids only
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d

Fig. 7.1 -- Cton tiued
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sent results represent a rather extreme example of this, with a total of seven Mach
triple points in the double Mach region, including a third triple point along the top
sfiock. The seven triple points are marked in Fig. 7.2d. This calculation gives some
indication of why adaptive mesh refinement is an important tool in these problems.
As -; approaches one, the distance between the leading edge of the wall jet and the
main Mach stem becomes smaller and smaller, requiring more grid resolution in
that region. The value of -, in this calculation represents the limit of resolution.
given the resources available on the Cray XMP. The calculations in [11] using
uniform grids without mesh refinement. were not ftlly resolved for - < 1.25. Even
with mesh refinement, at this low value of -, the flow field is not fully resolved at
time t = 0.115, in Fig. 7 .2a and b. Only after running to time t = 0.230. which by
self-similarity corresponds to increased grid resolution, is the solution adequately
resolved.

8. CONCLUSIONS

The complexity of our AMR code might be intimidating to a new user. Not
counting the integration routine, our program consists of 3000 lines of Fortran.
However, a big code is not necessarily a fragile code. We have been careful to
develop AMR to make it automatic and robust. In addition, a user should be able
to use AMR without having to understand it all. This makes it important to
develop AMR in a modular way. A user should be able to plug in an integrator for
a new problem without knowing details about how the more computer science
oriented parts of AMR work. but knowing that these other parts will indeed work.
We have already demonstrated this modularity by using AMR to compute tran-
sonic flow in conjunction with FL052 [5] and to compute a combustion problem
with a simple induction time model for chemistry [2].

The most difficult problems will best be solved by combining several adaptive
techniques. Despite its more complicated data structures, AMR has already been
combined with the conservative front-tracking scheme of [9]. This enables tracking
of a strong incident shock, while using shock-capturing for the other discontinuities.
and avoids the mismatch of strong captured shocks crossing grid boundaries.
This combined approach is being used to study transition from regular to Mach
reflection. Finally, we intend to couple this method with the variational technique
of [8]. Their mesh-moving technique would allow the underlying mesh geometry to
be approximately aligned with global features in the flow, leading to more efficient
refined meshes. However, the actual mesh refinement for error reduction would be
done with AMR. so the global time step penalty of moving mesh methods is not
incurred. Lastly, a major open question is how to use implicit difference schemes
with embedded grids for a time-dependent calculation. This will be needed to
compute solutions to hyperbolic-parabolic problems. such as the Navier-Stokes
equations at high Reynolds number.

e.,
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Abstract dence [20] that for strong shock calculations an unstruc-
We present a Cartesian mesh algorithm with adap- tured mesh has larger phase errors, and thus poorer

tive refinement to compute flows around arbitrary shock-capturing abilities, than structured grids.
geometries. Cartesian meshes have been less popular There are also several difficulties in using Carte-
than unstructured or body-fitted meshes because of sian grids. The main difficulty is the small cell problem.
several technical difficulties. We present an approach Arbitrarily small cells arise at the edge of the domain
that resolves many of these problems. Cartesian meshes where the grid intersects a body. Stable, accurate and
have the advantage of allowing the use of high resolution conservative difference schemes are needed for these
methods that are difficult to develop on unstructured cells. We would like the time step for a time-accurate
grids. They also allow for efficient implementation on computation to be based on the cell volume of the regu-
vector computers without using gather-scatter operations lar cells away from the body, and not be restricted by

.except at boundary cells. Some preliminary computa- small cells at the boundary. The time step appropriatc for
tional results using lower order boundary conditions are the regular grid cells can give a Courant number that is
presented. orders of magnitude larger than 1 for the smaller, irregu-

lar cells. This will lead to stability problems with stan-
1. Introduction dard explicit methods. In this work, we use an approach

The construction of logically rectangular body- based on wave propagation that essentially increases the
fitted grids for complicated geometries is notoriously size of the stencil near these small cells and maintains
difficult. One alternative is to use an unstructured mesh, stability for arbitrary time steps. This large time step
so that the cell volumes are not derived by a smooth approach was studied in one space dimension in [131,
mapping from a rectangular domain, as in [16] for exam- and has been applied in the present context of small
pie. Another possibility is to simply use a Cartesian grid boundary cells in [14,15].
over the entire flowfield. This introduces the difficulty Another problem with Cartesian grids is one of
of imposing solid wall boundary conditions on a grid that accuracy. Grid stretching, used in body-fitted grids to
is not aligned with the body. cluster the grid points in regions where they are needed,

Nonetheless, there are several reasons to prefer the cannot be used. Moreover, since the grid is not aligned
Cartesian grid approach, in addition to the ease of grid with the boundary, a loss of resolution may occur near
generation. First, it allows the use of higher order accu- the boundary. To improve the accuracy we use an adap-
rate shock capturing methods that are difficult to achieve tive mesh refinement algorithm developed in [81. Rec-
on an unstructured mesh with no coordinate directions. tangular refined grids are superimposed on the coarse
A Cartesian grid integrator is highly vectorizable. grid, so that the efficiency of the integrator on each grid
Gather-scatter type vector operations need to be per- is maintained. The time step is refined along with the
formed only in a lower dimensional region, and not over mesh width on the fine grids, so that the CFL condition is
the entire flowfield. The basic solver on a Cartesian maintained while allowing larger time steps on the
mesh is also simpler than on a body-fitted mesh, since coarser grids. This further concentrates the computa-
there are no metric terms. Finally, there is some evi- tional work where it is needed.

Copyright (P American Institute of Aeronautics and
Astronautics, Inc., 1989. All rights reserved.



Cartesian mesh methods have received increased All grid cells are indexed using the rectangular
attention recently. Cariesian grids were used in [19] to Cartesian structure. Additional information about the
solve the full potential equations. This was extended to irregular cells is kept in a linked list data structure that is
the Euler equations in two space dimensions in [ 11], and easily traversed in implementing the boundary condi-
to three dimensions in [12]. Cartesian grids have also tions. Necessary information includes the cell area and
been used in conjunction with an implicit, flux-vector list of vertices for each irregular cell, as well as a pointer
split method for the Euler equations [101. These calcula- to its location in the Cartesian grid. In the other direc-
tions, however, suffer from the lack of resolution of a tion, a two dimensional integer array indicates whether a
Cartesian mesh; none of the calculations used a local Cartesian cell is regular, and for irregular cells contains a
mesh refinement algorithm. The use of a global, tensor pointer to the corresponding location in the linked list.
product grid to concentrate grid lines near the leading When grid refinement is used there may be several rec-
edge of an airfoil, for example, can be very wasteful. In tangular grids, each with its own solution storage and
those computations, the small, irregular cells near the irregular points list.
body were merged into their neighboring cells to create a
cell that was large enough to satisfy a stability constraint. (ij+l)
This procedure loses resolution.

In the next section, we describe our overall com-
putational method, including the organization of the cal- 0-lj) (ij)
culation and the boundary representation. Section 3 i/(
describes the large time step method and the implemen-
tation of the solid wall boundary conditions. Section 4
describes the mesh refinement algorithm. In Section 5
we show applications of our method to the inviscid EulerN
equations in two geometries: shocked flow around two
cylinders, and a curved channel calculation.

2. Algorithm and Data Structures
We consider the Euler equations in two space (a)

diritensions,

U, + F(U), + G(U)) = 0, Cj+I/2

where

U2puv Fi-1t2,j 0) Fi+ 112j
U F(U)= +P (U) pUV

dpE JpuE + upJ pv + vp
and

p = (y-I)(pE-p(u 2+v2)/2)). (b)

The boundary of a solid object is approximated by Figure 1 (a) a Cartesian grid. The shaded region
piecewise linear segments at shown in Figure Ia. We represents a solid body. (b) Blowup of cell (Qj)
assume that the boundary cuts through each cell at most showing the fluxes.
once, so that the resulting irregular cell is a polygon with
at most five sides. We use a finite volume method, with
Ui., representing the cell average of the vector of con- In each time step, the cell values are updated by
served quantities in cell (i,j), i.e. differencing fluxes at the cell sides, as illustrated in Fig-

I ture lb. The updating formula is

LAO, u(x,ys.) dy. U = - -A (1)
where AJ is the area of the cell. For regular cells, away A

from die boundary, A41 = 4xAy, but A44 may be orders of + GQ,1/2 - G,1-112 + Hd1.
magnitude smaller for cells on the boundary. boundary of the cell. For example, with Godunov's
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method we would obtain Fi,1,j by solving a Riemann for arbitrarily small cells, in practice very small cells still
problem u, + f (u), = 0 with left and right states U,,i and cause difficulties in some computations. The exact
Ui+,j to determine the correct intermediate state u- We causes of this are currently under study. In the present
then set Fi+l/2j = hi+l/ 2jf(u*), where hi+112,J is the code, stability is restored by means of an averaging pro-
length of the interface between cells (ij) and (i+lj). cess. In very small cells (those with area less than 3% of
For regular cells this length is just Ay. Similarly, Gi+ 112  the regular cell size, typically), the value of tl is
is the flux per unit time through the top of the cell. replaced by a weighted average of the original value and
Finally, Hij is the flux per unit time through the irregular the value in one or more neighboring cells. The choice of
side of the cell, which represents the solid wall boundary cells depends on the local geometry. The value in the
of the fluid domain. In regular cells, Hij = O. With neighboring cell(s) is also modified in such a way that
higher order Godunov schemes such as MUSCL, the left conservation is maintained. The weights used are pro-
and right states are modified using slope information to portional to the cell areas and hence the value in the
achieve second order accuracy. small cell is replaced by a value that is essentially equal

In irregular cells there are two difficulties with this to that of the cell's primary neighbor (or a weighted

approach. First, the neighboring cell values needed to averaged of two or three neighboring cells). This pro-

define appropriate slopes may not be present. This is cedure has been found to eliminate any remaining insta-

currently handled by setting the slopes to zero, so that bilities. This algorithm is similar to the flux redistribution

the flux reduces to the Godunov flux at these interfaces, algorithm in t9],

Improvements to this algorithm are currently under
study. 3. Boundary Conditions and Flux Modification

Even with first order fluxes, there is still a stability For irregular cells at the boundary, the fluxes that

problem. Use of these fluxes in updating formula (1) are calculated in the first stage of the algorithm are sim-

will give instabilities in cells where Aij is very small ply the Godunov fluxes obtained by solving the Riemann

relative to At. A wave propagation interpretation of this problem between this cell and each neighbor. In order to

is given in Section 3, where we present a way to modify understand how these fluxes should be modified for

the fluxes to account for the reflection of waves at the small cells, we first consider Godunov's method on a

boundary and obtain a much more stable algorithm, regular grid cell. The method can be interpreted in the

First we present an outline of the overall algorithm, following way: Solve the Riemann problem at each
interface to obtain waves propagating away from the

Step 1: Initial flux computation. In the first pass, interface. For each wave that propagates into the cell, let
fluxes at all cell boundaries are computed assuming that AU represent the jump in the conserved quantities across
the grid is regular, even at interfaces where both neigh- the wave. Suppose that in time At this wave sweeps
boring cells lie outside of the actual fluid domain. This through a certain fraction ct of the cell. Then the cell
is done for ease of vectorization, but the calculations out- average Uj is updated by the quantity aAU. Note that
side the domain will have no influence on the final solu- the CFL condition requires a < 1, and that a is the ratio
tion. Also, the interface lengths are always assumed to of the area swept out by the wave to the total cell area
be Ax or Ay in computing the flux per unit time, regard- (see Figure 2). The wave shown in Figure 2 propagates
less of the true length of the side. This will be corrected with speed s >0 from the left side of the cell, and so
in step 2 as required.

Step 2: Flux Modification Near the Boundary. In a = sAt

the second step, we march around the solid boundary of Ail, Ax

the fluid domain, modifying the fluxes of the irregular Now consider the same wave but suppose that the
cells. First we adjust the fluxes F and G at each interface cell in question is an irregular cell as shown in Figure 3a.
to incorporate the correct length rather than the standard We now have a = sAt lid > 1, and updating U .j by
length Ax or Ay. Next, we modify the fluxes to improve a AU would lead to instability. However, an alternative
the stability of the small cells and incorporate the solid approach that is physically more reasonable is to update
wall boundary conditions. This will be described in Uaj by only 1.0.AU, since the wave overlaps the entire
more detail in the next section. Finally, we calculate the cell, and then to update cells further to the right by the
fluxes Hij at the irregular side of each boundary cell. remainder of the wave (a-I)AU. This is the basis of the
This is also described in section 3. large time step method originally described in [13). In

Step 3: Updating U.. The grid values Uij are the present context however, there are no cells to the
now updated using the flux differencing formula (1). right. Instead, there is a solid wall boundary, off which

Step 4: Smoothing at the Boundary. Although the the wave should reflect. This is illustrated in Figure 3b.

flux modification of Step 2 is intended to give stability The portion of the wave that lies outside the domain is
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i (a)
-Ay

sAt

Figure 2 The wave containing the jump in con-
served quantities travels to the right a distance sAt
away from the interface.

reflected normal to the boundary segment of this cell. " )

Linearization of the solid wall boundary conditions sug-
gests that the reflected wave should carry a jump AC,
which has the same jump as AU in density, pressure and
tangential velocity, but which has the jump in normal
velocity negated. (Normal and tangential refer to the
orientation of the solid wall boundary).

This reflected wave overlaps some fraction 051 of Figure 3 (a) The wave completely sweeps through

the cell, and so Uij is further updated by PAC. In addi- the small boundary cell. (b) The wave reflects off

don, the reflected wave may overlap neighboring cells, the boundary back into the domain.

and each of these is also updated by the fraction of the

cell overlapped multiplied by ACI. In Figure 3b, three 4. Mesh Refinement
neighboring cells are affected by the reflected wave. This The adaptive mesh refinement algorithm (hen-

is the maximum number possible, so the amount of corn- ceforth AMR) is based on the use of uniform, local grid

putational work required is bounded. refinements superimposed on an underlying coarse grid.

As just described, the waves are used to update These embedded grid refinements can be recursively

cell values directly. In the actual implementation, the nested to maintain a fixed level of accuracy in the calcu-

waves are used to update the fluxes at the cell interfaces lation. Unlike other embedded grid refinement methods,

by calculating the flux through each interface due to the (e.g [181), in this method the grid cells requiring

wave. This makes tliese boundary conditions easier to refinement in each level are grouped together into rec-

use in conjunction with an arbitrary flux differencing tangular blocks which 'c uniformly refined. This means

method away from the boundaries. The flux at each that some coarse grid cells may be unnecessarily refined,

interface is modified by any wave that crosses the inter- but has the advantage that all grids are uniform and rec.

face. For example, the reflected wave in Figure 3b tangular. This allows us to maintain vectorization

crosses four interfaces and would modify the flux at each without using gather/sca:ter operations. It also allows

of these interfaces. for a simple user interface, since a finite difference

Finally, we must calculate the flux Hij at the solid scheme can be written for a uniform rectangular grid

wall boundary itself. The basic flux is computed by solv- without concern for the connectivity of each cell. The

ing a Riemann problem at the wall with data given by use of fine grids instead of unstructured grid points also

Uj and Oij. The vector Clij agrees with Ui.i in density, reduces the storage overhead, which is on a per grid

pressure and tangential velocity but again has the normal basis for our method, rather than the overhead per cell

velocity negated. This flux is then modified by any wave found in unstructured mesh calculations. The additional

that reflects off the wall, once by the outgoing flux of the complications introduced by this approach occur at the

wave AU and then again by the incoming flux of the interfaces of the fine and coarse grids (see below).

reflected wave.
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In addition to refining the spatial grid for time- (1,1) containing a fine grid cell (k.1) in the lower left
accurate computations we use a smaller time step on the corner. If a fine grid is then removed, the total mass in
fine grids as well. This keeps the mesh ratio of time step the domain is conserved. Secondly, after every integra-
to space step the same on all grids, and so the same tion step the solution is post-processed at all coarse grid
explicit finite difference scheme is stable on all grids, points adjacent to a fine grid. The initial coarse flux
The computational work is thus further concentrated on (computed ignoring the fine grids) is subtracted, and the
the fine grids, where it should be. In contrast, some sum of the fine grid fluxes over space and time is added
adaptive methods for transient flows use the same time in its place. Thirdly. we use conservative interpolation
step for the whole mesh [16,17]. This can be less procedures to initialize the solution when a fine grid is
efficient, since the resulting Courant number may be far created. A more complete description oi the algorithm
smaller than necessary over the unrefined portion of the for time-dependent pdes is in [6).
grid.

AMR uses an automatic error estimation pro- S. Numerical Results

cedure, based on Richardson extrapolation, to determine We illustrate the method on two time-dependent
the regions in the domain where the resolution in the problems involving shxck waves. In the first example
solution is insufficient. These coarse grid cells are we compute flow around two cylinders. An incident
"flagged" as needing refinement. In addition, the irregu- shock travels at Mach number 2.81. One cylinder is
lar grid cells at solid bodies should be flagged as needing slightly ahead of the other. This leads to an interesting
refinement if the geometry of the boundary is under- pauern of wave reflections between the two cylinders. In
resolved. An automatic grid generation algorithm addition there is a reflected bow shock, and complicated
groups these flagged cells into rectangular grid patches. wave structures behind the cylinders after the shocks
We have developed heuristic procedures that are quite pass by. All of these regions use the adaptive refinement
successful at this type of grid generation (41. We try to as the solution develops. Figure 4 shows the incident
balance the conflicting goals of minimizing the number shock with the location of the refined grids indicated.
of fine grids and minimizing the area that is unneces- The initial coarse grid is 64 by 64. Two levels of grids
sarily refined, are used, with a refinement factor of 4. Figure 5 shows

The time accurate integration algorithm proceeds density contours of the solution at later stages of the

by taking one step on the coarsest grid, and as many simulation.

steps as necessary on the finer level grids until they
catch up to the coarse grid time. If there are several lev- OENSITY. TIME - S Se0 COMPOSITE

els of fine grids, this is applied recursively. At this point
the grids are advanced independently of each other,
except that fine grids require boundary values from adja-
ent fine grids or interpolated firom the coarser grids. _
For a five point stencil, a fine grid will need 2 points all
around the outside of the grid in order to advance the
solution one step. If there is an adjacent fine grid, it can

supply the missing points. Otherwise, these so-called
dummy points are obtained using bilinear interpolation
in space and linear interpolation in time from the coarsegrid.

Since we will be computing discontinuous solu-
tions of hyperbolic conservation laws, the adaptive mesh
refinement algorithm needs to be conservative. This is
complicated by the use of different time steps on the dif-
ferent grids. Conservation is ensured in three different
parts of the mesh refinement algorithm. When two adja- Figure 4 Density contours and gid locations ai-
cent levels of grids am at same time, the fine grid itial time for shock impinging on two cylinders.
updates the come grid, performing the conservative
averaging procedure

,-t ,-1 The second example we consider is a Mach 2.2
U1 TM - 2, 1E Uft-.1 shock travelling in a channel with a 90 degree bend.

a ao This has previously been studied in [1.21]. We use a

whemr is the mesh refinemem ratio, for each comse cell very coarse initial grid, since much of the initial VOC-
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Figure 6 Density contours for shock in a channel
with 90 degree bend.

interior scheme. We also hope to eliminate the smooth-
ing step now used to insure stability in the very small
cells.

We also plan to include an acceleration procedure
for steady state calculations. For nested Cartesian grids
multigrid is particularly attractive, since the data struc-
tures and grid transfer operations in the adaptive grid
refinement algorithm make up almost all of those needed
in multigrid [5]. Local grid refinement and multigrid
have already been combined using a logically rectangu-
lar body-fitted grid in [7].

An important consideration is whether these tech-
niques will extend to Navier-Stokes calculations. For
problems with boundary layers, it is usually desirable to

Figure 5 Density contours at later times. use body-fitted grids and refine heavily in the direction
normal to the boundary. Refining Cartesian grid cells

[angular grid is outside the computational domain. We near such a boundary may be highly inefficient. In such

use two additional levels of refinement by a factor of 4 in cases a component grid approach may be useful, in

each case in order to obtain good resolution of the shock which there are several grids with distinct coordinate
and induced wave pattern. Figure 6 shows density con- systems. For example, there may be a thin body-fitted
tours when the shock has passed most of the way boundary layer region in addition to an underlying Carte-through the channel. In this figure, the locaton of the sian grid. These multiple components will overlap in anthree levels of refined grids is indicated on the contour arbitrary way, creating small irregular cells as in theplots, Cartesian mesh method above. Again, stable and conser-vative difference equations are needed to compute the

6. Conclusions flow at these mesh junctions. The techniques used here
should be directly applicable to this situation. Such an

This work demonstrates the feasibility of an adap- approach has previously been considered by others, e.g.
tive Cartesian grid approach for fluid problems in com- [2,31. However, these previous efforts did not treat the
plicated geometries. Several aspects of this approach are interface conditions between the different grids in an
still under development. We would like to improve the accurate or conservative way.
boundary scheme to make it second order along with the
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